-
Notifications
You must be signed in to change notification settings - Fork 2
/
example_simple_features.py
138 lines (102 loc) · 3.95 KB
/
example_simple_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import random
import numpy as np
import igraph
from sklearn import svm
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import linear_kernel
from sklearn.cross_validation import KFold
from sklearn.metrics import f1_score
from sklearn import preprocessing
import nltk
import csv
nltk.download('punkt') # for tokenization
nltk.download('stopwords')
stpwds = set(nltk.corpus.stopwords.words("english"))
stemmer = nltk.stem.PorterStemmer()
with open("social_test.txt", "r") as f:
reader = csv.reader(f)
testing_set = list(reader)
testing_set = [element[0].split(" ") for element in testing_set]
# data loading and preprocessing
# the columns of the data frame below are:
# (1) paper unique ID (integer)
# (2) publication year (integer)
# (3) paper title (string)
# (4) authors (strings separated by ,)
# (5) name of journal (optional) (string)
# (6) abstract (string) - lowercased, free of punctuation except intra-word dashes
with open("social_train.txt", "r") as f:
reader = csv.reader(f)
training_set = list(reader)
training_set = [element[0].split(" ") for element in training_set]
with open("node_information.csv", "r") as f:
reader = csv.reader(f)
node_info = list(reader)
# to test code we select sample
to_keep = random.sample(range(len(training_set)), k=int(round(len(training_set)*0.05)))
training_set = [training_set[i] for i in to_keep]
valid_ids=set()
for element in training_set:
valid_ids.add(element[0])
valid_ids.add(element[1])
tmp=[element for element in node_info if element[0] in valid_ids ]
node_info=tmp
del tmp
IDs = []
ID_pos={}
for element in node_info:
ID_pos[element[0]]=len(IDs)
IDs.append(element[0])
# we will use three basic features:
# number of overlapping words in title
overlap_title = []
# temporal distance between the papers
temp_diff = []
# number of common authors
comm_auth = []
counter = 0
for i in range(len(training_set)):
source = training_set[i][0]
target = training_set[i][1]
source_info = node_info[ID_pos[source]]
target_info = node_info[ID_pos[target]]
# convert to lowercase and tokenize
source_title = source_info[2].lower().split(" ")
# remove stopwords
source_title = [token for token in source_title if token not in stpwds]
source_title = [stemmer.stem(token) for token in source_title]
target_title = target_info[2].lower().split(" ")
target_title = [token for token in target_title if token not in stpwds]
target_title = [stemmer.stem(token) for token in target_title]
source_auth = source_info[3].split(",")
target_auth = target_info[3].split(",")
overlap_title.append(len(set(source_title).intersection(set(target_title))))
temp_diff.append(int(source_info[1]) - int(target_info[1]))
comm_auth.append(len(set(source_auth).intersection(set(target_auth))))
if counter % 10000 == 0:
print(counter, "training examples processsed")
counter += 1
# convert list of lists into array
# documents as rows, unique words as columns (i.e., example as rows, features as columns)
training_features = np.array([overlap_title, temp_diff, comm_auth]).T
# scale
training_features = preprocessing.scale(training_features)
# convert labels into integers then into column array
labels = [int(element[2]) for element in training_set]
labels = list(labels)
labels_array = np.array(labels)
print("evaluating")
#evaluation
kf = KFold(len(training_set), n_folds=10)
sumf1=0
for train_index, test_index in kf:
X_train, X_test = training_features[train_index], training_features[test_index]
y_train, y_test = labels_array[train_index], labels_array[test_index]
# initialize basic SVM
classifier = svm.LinearSVC()
# train
classifier.fit(X_train, y_train)
pred=classifier.predict(X_test)
sumf1+=f1_score(pred,y_test)
print("\n\n")
print(sumf1/10.0)