forked from mit-han-lab/spvnas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Dockerfile
60 lines (40 loc) · 1.87 KB
/
Dockerfile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# Base Image
FROM nvidia/cuda:11.1.1-cudnn8-devel-ubuntu18.04
# Install Python
RUN apt update && apt install python3-pip -y
RUN pip3 install --upgrade pip
# Model Dependencies
# RUN pip3 install torch==1.9.1+cu102 --extra-index-url https://download.pytorch.org/whl/cu100
# RUN pip3 install torchvision==0.10.1+cu102 --extra-index-url https://download.pytorch.org/whl/cu100
RUN pip3 install pillow==6.1.0
RUN pip3 install torch==1.9.1+cu111 torchvision==0.10.1+cu111 -f https://download.pytorch.org/whl/torch_stable.html
RUN pip3 install torchaudio==0.9.1
RUN pip3 install numba==0.53.1
RUN pip3 install opencv-python==4.5.5.64
RUN pip3 install torchpack==0.3.1
RUN pip3 install tqdm==4.64.0
# MPI (for torch sparse)
RUN apt-get install -y ninja-build
RUN apt-get install -y libboost-all-dev
RUN pip3 install mpi4py==3.1.3
# Install custom torch sparse
RUN apt update && apt install libsparsehash-dev
RUN apt-get install -y git
# ENV rather than export
# https://stackoverflow.com/questions/27093612/in-a-dockerfile-how-to-update-path-environment-variable
ENV PATH=/usr/local/cuda-11.1/bin${PATH:+:${PATH}}
ENV LD_LIBRARY_PATH=/usr/local/cuda-11.1/lib${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
ENV CUDA_HOME=/usr/local/cuda-11.1
ENV CUDA_PATH=/usr/local/cuda-11.1
# RUN pip3 install tensorflow==2.6.2
RUN pip3 install tensorflow==2.4.0
# RUN export CUDA_HOME=/usr/local/cuda
# commit 4fa67d2f728fa78b1748ba065b0e6ff1ae528eea
# https://github.com/mit-han-lab/torchsparse/blob/master/docs/FAQ.md
# http://arnon.dk/matching-sm-architectures-arch-and-gencode-for-various-nvidia-cards/
# NOTE MY GPU WAS A GTX 1080 aka SM_61 for TORCH_CUDA_ARCH_LIST
# RUN pip3 install --upgrade git+https://github.com/mit-han-lab/[email protected]
RUN TORCH_CUDA_ARCH_LIST="6.1" FORCE_CUDA=1 pip3 install -v git+https://github.com/mit-han-lab/[email protected]
RUN nvcc --version
RUN echo $PATH
RUN ls /usr/local