-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsingle_filter_analysis.py
154 lines (127 loc) · 5.14 KB
/
single_filter_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
"""
Module to make a fingerplot automatically. Tuned on LNGS wav data, may have
problems on other data.
"""
from scipy import signal
import numpy as np
from matplotlib import pyplot as plt
def plot_histogram(ax, counts, bins, **kw):
"""
Plot an histogram.
Parameters
----------
ax : matplotlib axis
The axis where the histogram is drawn.
counts, bins : array
The output from `np.histogram`.
**kw :
Keyword arguments are passed to `ax.plot`.
Return
------
lines : tuple
The return value from `ax.plot`.
"""
return ax.plot(np.pad(bins, (1, 0), 'edge'), np.pad(counts, 1), drawstyle='steps-post', **kw)
def single_filter_analysis(corr_value, fig1=None, fig2=None, return_full=False):
"""
Do a fingerplot and compute the SNR for an array of values.
Parameters
----------
corr_value : 1D array
The filter output already corrected for sign and baseline. May not
work if there are less than 1000 values.
fig1, fig2 : matplotlib figure objects (optional)
If given, make a fingerplot and a plot of the peak centers and widths.
return_full : bool
If True return additional information.
Returns
-------
snr : float
The ratio of the center of the second peak over the width of the first.
The following are returned if return_full=True:
center : array (M,)
The centers of the peaks.
width : array (M,)
The width of the peaks. Standard deviation or equivalent.
"""
# Make a histogram.
L, R = np.quantile(corr_value, [0, 1 - 200 / len(corr_value)])
bins = np.linspace(L, R, 101)
counts, _ = np.histogram(corr_value, bins=bins)
# Add an empty bin to the left for find_peaks (it searches local maxima).
bins = np.concatenate([[bins[0] - (bins[1] - bins[0])], bins])
counts = np.concatenate([[0], counts])
# Find peaks in the histogram.
peaks, pp = signal.find_peaks(counts, prominence=16, height=16, distance=5)
ph = pp['peak_heights']
psel = np.concatenate([[True], (ph[1:] / ph[:-1]) > 1/5])
peaks = peaks[psel]
ph = ph[psel]
if len(peaks) <= 1:
if return_full:
return 0, np.empty(0), np.empty(0)
else:
return 0
# Take regions around the peaks.
bins_center = (bins[1:] + bins[:-1]) / 2
peaks_loc = bins_center[peaks]
window_mid = (peaks_loc[1:] + peaks_loc[:-1]) / 2
window = np.concatenate([
# [peaks_loc[0] - 2 * (window_mid[0] - peaks_loc[0])],
[-np.inf],
window_mid,
[peaks_loc[-1] + (peaks_loc[-1] - window_mid[-1])]
])
# Compute median and interquantile range for each region.
center, width, N = np.empty((3, len(window) - 1))
for i in range(len(window) - 1):
selection = (window[i] <= corr_value) & (corr_value < window[i + 1])
values = corr_value[selection]
center[i] = np.median(values)
width[i] = np.diff(np.quantile(values, [0.50 - 0.68/2, 0.50 + 0.68/2]))[0] / 2
N[i] = len(values)
# Check if the positions of the peaks make sense.
medianstd = np.sqrt(np.pi / 2) * width / np.sqrt(N)
firstbad = np.abs(center[0]) > 5 * medianstd[0]
secondbad = center[1] < 5 * medianstd[1]
bad = firstbad or secondbad
# Compute signal to noise ratio.
snr = center[1] / width[0]
# Figure of histogram with peaks highlighted.
if fig1 is not None:
ax = fig1.subplots(1, 1)
ax.set_xlabel('Baseline-corrected filter output [ADC unit]')
ax.set_ylabel('Counts per bin')
plot_histogram(ax, counts, bins, color='black', zorder=2.1, label='histogram')
ax.plot(peaks_loc, ph, 'o', color='#f55', zorder=2.2, label='auto-detected peaks')
kwvline = dict(linestyle=':', color='black', label='boundaries')
for i in range(len(window)):
ax.axvline(window[i], **kwvline)
kwvline.pop('label', None)
kwvline = dict(linestyle='--', color='black', linewidth=1, label='median')
kwvspan = dict(color='lightgray', label='symmetrized 68 % interquantile range')
for i in range(len(center)):
ax.axvline(center[i], **kwvline)
ax.axvspan(center[i] - width[i], center[i] + width[i], **kwvspan)
kwvline.pop('label', None)
kwvspan.pop('label', None)
ax.legend(loc='upper right')
ax.set_ylim(0, ax.get_ylim()[1])
ax.minorticks_on()
ax.grid(True, which='major', linestyle='--')
ax.grid(True, which='minor', linestyle=':')
# Figure of centers and widths of peaks.
if fig2 is not None:
ax = fig2.subplots(2, 1, sharex=True)
ax[0].set_title('Center and width of peaks in signal histogram')
ax[0].set_ylabel('median')
ax[1].set_ylabel('68 % half interquantile range')
ax[1].set_xlabel('Peak number (number of photoelectrons)')
ax[0].plot(center, '.--')
ax[1].plot(width, '.--')
for a in ax:
a.grid()
output = 0 if bad else snr
if return_full:
output = (output, center, width)
return output