-
Notifications
You must be signed in to change notification settings - Fork 1
/
predict_caption.py
381 lines (280 loc) · 13.9 KB
/
predict_caption.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
IMAGE CAPTIONING ON PYTORCH
Original paper:
Show and tell: A neural image caption generator,
Oriol Vinyals, Alexander Toshev, Samy Bengio, Dumitru Erhan, 2015
Reference for implementation:
https://github.com/Hvass-Labs/TensorFlow-Tutorials/blob/master/22_Image_Captioning.ipynb
https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Image-Captioning
In this script, we implement two methods to predict a caption given a sentence:
- sampling
- beam search
"""
#=========================================================================================================
#=========================================================================================================
#================================ 0. MODULE
import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
import numpy as np
import json
import os
from model import Encoder, Decoder
from preprocessing import load_embeddings
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import skimage.transform
from skimage.transform import resize
from imageio import imread
import argparse
#=========================================================================================================
#=========================================================================================================
#================================ 1. ACCURACY
def accuracy(scores, targets, k):
"""
Computes top-k accuracy, from predicted and true labels.
Arguments:
----------
scores: scores from the model
targets: true labels
k: k in top-k accuracy
Return:
-------
top-k accuracy
"""
batch_size = targets.size(0)
_, ind = scores.topk(k, 1, True, True)
correct = ind.eq(targets.view(-1, 1).expand_as(ind))
correct_total = correct.view(-1).float().sum()
return correct_total.item() * (100.0 / batch_size)
#=========================================================================================================
#=========================================================================================================
#================================ 2. BEAM SEARCH
def caption_image_beam_search(encoder, decoder, image_path, word_map, beam_size=5, with_attention=False):
"""
Reads an image and captions it with beam search.
Arguments:
----------
encoder: encoder model
decoder: decoder model
image_path: path to image
word_map: word map
beam_size: number of sequences to consider at each decode-step
Returns:
--------
caption
weights for visualization
"""
k = beam_size
vocab_size = len(word_map)
decoder.eval()
encoder.eval()
# Read image and process
img = imread(image_path)
if len(img.shape) == 2:
img = img[:, :, np.newaxis]
img = np.concatenate([img, img, img], axis=2)
img = resize(img, (256, 256))
img = img.transpose(2, 0, 1)
# Encode
image = torch.FloatTensor(img).unsqueeze(0).to(DEVICE) # (1, 3, 256, 256)
encoder_out = encoder(image) # (1, enc_image_size, enc_image_size, encoder_dim)
enc_image_size = encoder_out.size(1)
encoder_dim = encoder_out.size(3)
# Flatten encoding
encoder_out = encoder_out.view(1, -1, encoder_dim) # (1, num_pixels, encoder_dim)
num_pixels = encoder_out.size(1)
# We'll treat the problem as having a batch size of k
encoder_out = encoder_out.expand(k, num_pixels, encoder_dim) # (k, num_pixels, encoder_dim)
# Tensor to store top k previous words at each step; now they're just <start>
k_prev_words = torch.LongTensor([[word_map['<start>']]] * k).to(DEVICE) # (k, 1)
# Tensor to store top k sequences; now they're just <start>
seqs = k_prev_words # (k, 1)
# Tensor to store top k sequences' scores; now they're just 0
top_k_scores = torch.zeros(k, 1).to(DEVICE) # (k, 1, 1)
# Tensor to store top k sequences' alphas; now they're just 1s
seqs_alpha = torch.ones(k, 1, enc_image_size, enc_image_size).to(DEVICE) # (k, 1, enc_image_size, enc_image_size)
# Lists to store completed sequences, their alphas and scores
complete_seqs = []
complete_seqs_alpha = []
complete_seqs_scores = []
# Start decoding
step = 1
h, c = decoder.init_hidden_state(encoder_out)
if with_attention:
# s is a number less than or equal to k, because sequences are removed from this process once they hit <end>
while True:
try:
embeddings = decoder.embedding(k_prev_words).squeeze(1) # (s, embed_dim)
awe, alpha = decoder.attention(encoder_out, h) # (s, encoder_dim), (s, num_pixels)
alpha = alpha.view(-1, enc_image_size, enc_image_size) # (s, enc_image_size, enc_image_size)
gate = decoder.sigmoid(decoder.f_beta(h)) # gating scalar, (s, encoder_dim)
awe = gate * awe
h, c = decoder.decode_step(torch.cat([embeddings, awe], dim=1), (h, c)) # (s, decoder_dim)
scores = decoder.classifier(h) # (s, vocab_size)
scores = scores.squeeze()
scores = F.log_softmax(scores, dim=1)
# Add
scores = top_k_scores.expand_as(scores) + scores # (s, vocab_size)
# For the first step, all k points will have the same scores (since same k previous words, h, c)
if step == 1:
top_k_scores, top_k_words = scores[0].topk(k, 0, True, True) # (s)
else:
# Unroll and find top scores, and their unrolled indices
top_k_scores, top_k_words = scores.view(-1).topk(k, 0, True, True) # (s)
# Convert unrolled indices to actual indices of scores
prev_word_inds = top_k_words / vocab_size # (s)
next_word_inds = top_k_words % vocab_size # (s)
# Add new words to sequences, alphas
seqs = torch.cat([seqs[prev_word_inds], next_word_inds.unsqueeze(1)], dim=1) # (s, step+1)
seqs_alpha = torch.cat([seqs_alpha[prev_word_inds], alpha[prev_word_inds].unsqueeze(1)],
dim=1) # (s, step+1, enc_image_size, enc_image_size)
# Which sequences are incomplete (didn't reach <end>)?
incomplete_inds = [ind for ind, next_word in enumerate(next_word_inds) if
next_word != word_map['<end>']]
complete_inds = list(set(range(len(next_word_inds))) - set(incomplete_inds))
# Set aside complete sequences
if len(complete_inds) > 0:
complete_seqs.extend(seqs[complete_inds].tolist())
complete_seqs_alpha.extend(seqs_alpha[complete_inds].tolist())
complete_seqs_scores.extend(top_k_scores[complete_inds])
k -= len(complete_inds) # reduce beam length accordingly
# Proceed with incomplete sequences
if k == 0:
break
seqs = seqs[incomplete_inds]
seqs_alpha = seqs_alpha[incomplete_inds]
h = h[prev_word_inds[incomplete_inds]]
c = c[prev_word_inds[incomplete_inds]]
encoder_out = encoder_out[prev_word_inds[incomplete_inds]]
top_k_scores = top_k_scores[incomplete_inds].unsqueeze(1)
k_prev_words = next_word_inds[incomplete_inds].unsqueeze(1)
# Break if things have been going on too long
if step > 50:
break
step += 1
except:
break
i = complete_seqs_scores.index(max(complete_seqs_scores))
seq = complete_seqs[i]
alphas = complete_seqs_alpha[i]
return seq, alphas
else:
# s is a number less than or equal to k, because sequences are removed from this process once they hit <end>
hidden = (h.unsqueeze(0), c.unsqueeze(0))
while True:
try:
embeddings = decoder.embedding(k_prev_words) # (s, embed_dim)
out, hidden = decoder.decoder(embeddings, hidden) # (s, decoder_dim)
scores = decoder.classifier( out ) # (s, vocab_size)
scores = scores.squeeze()
scores = F.log_softmax(scores, dim=1)
# Add
scores = top_k_scores.expand_as(scores) + scores # (s, vocab_size)
# For the first step, all k points will have the same scores (since same k previous words, h, c)
if step == 1:
top_k_scores, top_k_words = scores[0].topk(k, 0, True, True) # (s)
else:
# Unroll and find top scores, and their unrolled indices
top_k_scores, top_k_words = scores.view(-1).topk(k, 0, True, True) # (s)
# Convert unrolled indices to actual indices of scores
prev_word_inds = top_k_words / vocab_size # (s)
next_word_inds = top_k_words % vocab_size # (s)
# Add new words to sequences, alphas
seqs = torch.cat([seqs[prev_word_inds], next_word_inds.unsqueeze(1)], dim=1) # (s, step+1)
# Which sequences are incomplete (didn't reach <end>)?
incomplete_inds = [ind for ind, next_word in enumerate(next_word_inds) if
next_word != word_map['<end>']]
complete_inds = list(set(range(len(next_word_inds))) - set(incomplete_inds))
# Set aside complete sequences
if len(complete_inds) > 0:
complete_seqs.extend(seqs[complete_inds].tolist())
complete_seqs_scores.extend(top_k_scores[complete_inds])
k -= len(complete_inds) # reduce beam length accordingly
# Proceed with incomplete sequences
if k == 0:
break
seqs = seqs[incomplete_inds]
h = h[prev_word_inds[incomplete_inds]]
c = c[prev_word_inds[incomplete_inds]]
encoder_out = encoder_out[prev_word_inds[incomplete_inds]]
top_k_scores = top_k_scores[incomplete_inds].unsqueeze(1)
k_prev_words = next_word_inds[incomplete_inds].unsqueeze(1)
# Break if things have been going on too long
if step > 50:
break
step += 1
except:
break
i = complete_seqs_scores.index(max(complete_seqs_scores))
seq = complete_seqs[i]
return seq, i
#=========================================================================================================
#=========================================================================================================
#================================ 3. MAIN
# Same as in training
ATTENTION = False
DATA_FOLDER = '../datasets/Coco/data/'
MIN_WORD_FREQ = 5
N_CAPTIONS = 5
base_filename = 'COCO_' + str(N_CAPTIONS) + '_cap_per_img_' + str(MIN_WORD_FREQ) + '_min_word_freq'
embedding_file = '../datasets/glove.6B.200d.txt'
ENCODER_DIM = 2048 # ResNet
ATTENTION_DIM = 512
EMBBEDING_DIM = 200
DECODER_DIM = 512
DROPOUT = 0.3
DEVICE = 'cuda:0'
LAST_EPOCH = 26
PATH_IMAGES = ['../datasets/Coco/train2014/COCO_train2014_000000000034.jpg',
'../datasets/Coco/train2014/COCO_train2014_000000000078.jpg',
'../datasets/Coco/train2014/COCO_train2014_000000000081.jpg',
'../datasets/Coco/train2014/COCO_train2014_000000000110.jpg',
'../datasets/Coco/train2014/COCO_train2014_000000000194.jpg',
'../datasets/Coco/train2014/COCO_train2014_000000000263.jpg',
'../datasets/Coco/train2014/COCO_train2014_000000000394.jpg',
'../datasets/Coco/train2014/COCO_train2014_000000000404.jpg',
'../datasets/Coco/train2014/COCO_train2014_000000000431.jpg',
'../datasets/Coco/train2014/COCO_train2014_000000000471.jpg',
'../datasets/Coco/train2014/COCO_train2014_000000000510.jpg',
'../datasets/Coco/train2014/COCO_train2014_000000000656.jpg',
'../datasets/Coco/train2014/COCO_train2014_000000000813.jpg',
'../datasets/Coco/train2014/COCO_train2014_000000000828.jpg',
'../datasets/Coco/train2014/COCO_train2014_000000001098.jpg']
k = 5
if __name__ == '__main__':
# Read word map
print('\nLoading word map', end='...')
word_map_file = os.path.join(DATA_FOLDER, 'WORDMAP_' + base_filename + '.json')
with open(word_map_file, 'r') as j:
word_map = json.load(j)
vocab_size = len(word_map)
print('done')
# Load networks
print('Loading networks', end='...')
if ATTENTION:
decoder = DecoderWithAttention(ATTENTION_DIM, EMBBEDING_DIM, DECODER_DIM,
vocab_size, ENCODER_DIM, DROPOUT)
else:
decoder = Decoder(EMBBEDING_DIM, DECODER_DIM, vocab_size, ENCODER_DIM, DROPOUT)
print('done')
print('Loading last weights', end='...')
decoder.load_state_dict(torch.load('../models/image_captioning_{}.model'.format(LAST_EPOCH)))
encoder = Encoder(output_size=12) ## CAREFUL
print('done')
# Load embedding
print('Load embeddings', end='...')
embedding, _ = load_embeddings(embedding_file, DATA_FOLDER)
decoder.load_pretrained_embeddings(embedding)
print('done\n')
encoder = encoder.to(DEVICE)
decoder = decoder.to(DEVICE)
# Beam search
for image in PATH_IMAGES:
seq, _ = caption_image_beam_search(encoder, decoder, image, word_map, k, ATTENTION)
idx_to_word = {v: k for k, v in word_map.items()}
tokens = [idx_to_word[i] for i in seq]
predicted_description = ' '.join(tokens[1:-1])
print(predicted_description)