-
Notifications
You must be signed in to change notification settings - Fork 0
/
ex5_city_profile.py
executable file
·146 lines (82 loc) · 6.29 KB
/
ex5_city_profile.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#!/usr/bin/env python
'''
This scripts derives some basic information about a specified city in New Zealand
You have to adapt the variable "path_data" to match your file path to the data
To change the city that you would like to get information about, change the
parameter 'where' of the 'v.extract' module
Trouble shooting:
If you get the following error message:
"ERROR: option <output>: <studyarea> exists. To overwrite, use the --overwrite flag"
Press the "activate overwrite" button in the menu bar of the GRASS GIS Simple Python Editor.
If the process gets stuck inbetween, close and restart GRASS GIS and run the script again.
The v.distance tool is a bit buggy on Windows. So if it doesn't work, execute
the module manually in the GRASS GIS console. Full command is given below.
'''
import grass.script as gscript
import subprocess
import os
def main():
# Path to the folder containing that data sets
path_data = "//netfilec.ad.uni-heidelberg.de/home/n/nb152/git/OpenSourceGIS_exercise5/data"
# 0. Adjust the region of the mapset to your city ---------------------------
# Create new layer containting the selected district
gscript.run_command('v.extract', input='cities@PERMANENT', where="name='AK27'", output='studyarea')
# Adjust GRASS GIS region to the study area
gscript.run_command('g.region', vect='studyarea', align='rainfall@PERMANENT')
# 1. Calculate average rainfall within the study area
# ----------------------------------------------------
gscript.run_command('v.rast.stats', flags='c', map='studyarea', raster='rainfall@PERMANENT', column_prefix='rf', method='average,minimum')
# Read and print value of column "rf_average"
rf_average = gscript.read_command('v.db.select', map='studyarea', columns='rf_average')
print("Average rainfall: " + rf_average.split("\n")[1])
# Read and print value of column "rf_minimum"
rf_minimum = gscript.read_command('v.db.select', map='studyarea', columns='rf_minimum')
print("Minimum rainfall: " + rf_minimum.split("\n")[1])
# 2. Calculate number of hostels in Auckland
#---------------------------------------------
# The data set 'osm_hostels.geojson' includes ways and their nodes. We only want to import the ways with the tag tourism=hostel
# This can be done using v.in.ogr and the 'where' parameter. But in order to use this tool we need
# to reproject the data set first to EPSG:32760 using ogr2ogr.
# Path to data set containing hostels
path_hostels = os.path.join(path_data, 'nz_hostels.geojson')
# Reproject the data set
path_hostels_reprojected = os.path.join(path_data, 'nz_hostels_reprojected.geojson')
subprocess.call(['ogr2ogr', '-f', 'geojson', '-t_srs', 'EPSG:32760', path_hostels_reprojected, path_hostels])
# Importing the reprojected data set using v.in.ogr to be able to set the "where" parameter
gscript.run_command('v.in.ogr', input =path_hostels_reprojected, layer='nz_hostels', output='hostels', where="tourism='hostel'")
# Count the hostels within the study area
NumberOfHostels = gscript.read_command('v.vect.stats', flags='p', points='hostels', areas='studyarea', type='point,centroid')
print("Number of hostels: " + NumberOfHostels.split('|')[2])
# 2.1 Calculate number of Pubs in Auckland using osm_pubs.geojson
#-----------------------------------------------------------------
# add code here ....
# 3. Calculate total length of cycleways
# ----------------------------------------
# Import data set with cycleways
path_cycleways = os.path.join(path_data, "osm_cycleways.geojson")
gscript.run_command('v.import', input =path_cycleways, layer='osm_cycleways', output='cycleways')
# Select cycleways within the study area and save them in new layer 'cyclewaysInStudyarea'
gscript.run_command('v.select', ainput='cycleways', atype='line', binput='studyarea', btype='area', output='cyclewaysInStudyarea', operator='within')
# Add a new column 'length' to the layer 'cyclewaysInStudyarea'
gscript.run_command('v.db.addcolumn', map='cyclewaysInStudyarea', columns='length double precision')
# Calculate the length of each cycleway and store the result in the column 'length'
gscript.run_command('v.to.db', map='cyclewaysInStudyarea', type='line', option='length', columns='length', units='kilometers')
# Print the summary statistics for the column 'length'
cyclewaysStatistics = gscript.read_command('v.db.univar', map='cyclewaysInStudyarea', column='length')
print("Total length of cycleways: " + cyclewaysStatistics.split("\n")[9] + " km")
# 4. Find the nearby airports
# ----------------------------
# Calculate distances to all airports (in meters)
# gscript.run_command("v.distance", from="studyarea@vacation2", to="airports@PERMANENT", output="airport_distances", upload="dist,to_attr", column="airport,airport_distance", to_column="str_1", table="airport_distances", flags="a")
# the command above does not work due to a bug. Therefore we use subprocess.call() instead
subprocess.call(["v.distance", "-a", "from=studyarea", "to=airports@PERMANENT", "output=airport_distances", "upload=dist,to_attr", "column=airport_distance,airport", "from_type=centroid", "to_column=str_1", "table=airport_distances"])
# If the subprocess doesn't work either (likely on windows), execute the following command manually in the GRASS GIS console
# v.distance -a from=studyarea to=airports@PERMANENT output=airport_distances upload=dist,to_attr column=airport_distance,airport from_type=centroid to_column=str_1 table=airport_distances
# Select and print airports that are within a 100 km radius (calculation of distance in meters)
nearbyAirports = gscript.read_command('v.db.select', map='airport_distances', columns='airport,airport_distance', where='airport_distance <= 50000')
print("Nearby airports (<100km): \n" + nearbyAirports)
# Export airport distances to file
path_out_airportdistances = os.path.join(path_data, 'airport_distances.shp')
gscript.run_command('v.out.ogr', input='airport_distances', output=path_out_airportdistances, format='ESRI_Shapefile')
if __name__ == '__main__':
main()