-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathvideo_deepsort.py
52 lines (45 loc) · 2.11 KB
/
video_deepsort.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import logging
from action.action_Identify import ActionIdentify
from action.actions import *
from deep_sort import DeepSort
from yolo3.detect.video_detect import VideoDetector
from yolo3.models import Darknet
if __name__ == '__main__':
LOG_FORMAT = "%(asctime)s - %(levelname)s - %(message)s"
logging.basicConfig(level=logging.INFO, format=LOG_FORMAT)
model = Darknet("config/yolov4.cfg", img_size=(608, 608))
model.load_darknet_weights("weights/yolov4.weights")
model.to("cuda:0")
# 跟踪器
tracker = DeepSort("weights/ckpt.t7",
min_confidence=1,
use_cuda=True,
nn_budget=30,
n_init=3,
max_iou_distance=0.7,
max_dist=0.3,
max_age=30)
# Action Identify
# action_id = ActionIdentify(actions=[TakeOff(4, delta=(0, 1)),
# Landing(4, delta=(2, 2)),
# Glide(4, delta=(1, 2)),
# FastCrossing(4, speed=0.2),
# BreakInto(0, timeout=2)],
# max_age=30,
# max_size=8)
video_detector = VideoDetector(model, "config/coco.names",
#font_path="font/Noto_Serif_SC/NotoSerifSC-Regular.otf",
#font_size=14,
thickness=2,
skip_frames=2,
thres=0.5,
class_mask=[0, 2, 4],
nms_thres=0.4,
tracker=tracker,
half=True)
for image, detections, _ in video_detector.detect(0,
# output_path="../data/output.ts",
real_show=True,
skip_secs=0):
# print(detections)
pass