-
Notifications
You must be signed in to change notification settings - Fork 104
/
Copy pathProton_assignment.py
executable file
·423 lines (233 loc) · 9.93 KB
/
Proton_assignment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import numpy as np
from scipy.stats import norm
from matplotlib import pyplot as plt
from scipy.optimize import linear_sum_assignment as optimise
from scipy.stats import linregress
import copy
import os
import pickle
try:
from openbabel.openbabel import OBConversion, OBMol, OBAtomAtomIter, OBMolAtomIter
except ImportError:
from openbabel import *
def AssignProton(NMRData,Isomers,settings):
#do the assignment
for isomer in Isomers:
assigned_shifts, assigned_peaks, assigned_labels,scaled_shifts \
= iterative_assignment(NMRData.Hshifts,isomer.Hshifts,isomer.Hlabels,NMRData.protondata["integrals"],settings)
#add to isomers instance
isomer.Hexp = [''] * len(isomer.Hshifts)
for label,peak in zip(assigned_labels,assigned_peaks):
w = isomer.Hlabels.index(label)
isomer.Hexp[w] = peak
return Isomers
def iterative_assignment(exp_peaks,calculated_shifts, H_labels,rounded_integrals,settings):
calculated_shifts = np.array(calculated_shifts)
H_labels = np.array(H_labels)
lnum = 0
new_assigned_shifts = []
old_assigned_shifts = [1]
#print("calc shifts",calculated_shifts)
while old_assigned_shifts != new_assigned_shifts:
if lnum ==0:
scaled_shifts = external_scale_proton_shifts(calculated_shifts)
scaled_mu = 0
scaled_std = 1
else:
old_assigned_shifts = copy.copy(new_assigned_shifts)
old_assigned_peaks = copy.copy(new_assigned_peaks)
scaled_shifts,slope,intercept = internal_scale_proton_shifts(old_assigned_shifts,old_assigned_peaks,calculated_shifts)
scaled_std = 1
###############assign methyl groups first
#find methyl groups
m_protons = methyl_protons(settings.InputFiles[0].split('.sdf')[0] + ".sdf")
m_shifts = np.array([])
# find the average shifts of these groups
for m_group in m_protons:
s = 0
for proton in m_group:
w = np.where(H_labels == proton)
s += scaled_shifts[w]/3
m_shifts = np.hstack((m_shifts,s))
#find peaks these can be assigned too
methyl_peaks = []
rounded_integrals = np.array(rounded_integrals)
w = (rounded_integrals - (rounded_integrals % 3)) // 3
for ind, peak in enumerate(sorted(list(set(exp_peaks)))[::-1]):
methyl_peaks += [peak] * w[ind]
#create difference matrix
diff_matrix = np.zeros((len(m_shifts),len(methyl_peaks)))
for ind1, i in enumerate(m_shifts):
for ind2, j in enumerate(methyl_peaks):
diff_matrix[ind1,ind2] = j-i
prob_matrix = proton_probabilities(diff_matrix,scaled_mu,scaled_std)
prob_matrix = prob_matrix**2
prob_matrix = 1 - prob_matrix
vertical_ind, horizontal_ind = optimise(prob_matrix)
#unpack this assignment
opt_labelsm = []
opt_shiftsm = []
opt_peaksm = []
for j in vertical_ind:
opt_labelsm.extend(m_protons[j])
for i in horizontal_ind:
opt_peaksm += 3*[methyl_peaks[i]]
for label in opt_labelsm:
w = np.where(H_labels == label)
opt_shiftsm.append(calculated_shifts[w][0])
#remove shifts/peaks/labels for the list to assign
calculated_shiftsp = copy.copy(calculated_shifts)
exp_peaksp = copy.copy(exp_peaks)
scaled_shiftsp = copy.copy(scaled_shifts)
H_labelsp = copy.copy(H_labels)
#peaks
for p in opt_peaksm:
w = np.where(exp_peaksp == p)[0][0]
exp_peaksp = np.delete(exp_peaksp,w)
#shifts
for s in opt_shiftsm:
w = np.where(calculated_shiftsp == s)[0][0]
calculated_shiftsp = np.delete(calculated_shiftsp,w)
scaled_shiftsp = np.delete(scaled_shiftsp, w)
#labels
for l in opt_labelsm:
w = np.where(H_labelsp == l)[0][0]
H_labelsp = np.delete(H_labelsp,w)
###############assigned everything else
diff_matrix = np.zeros((len(calculated_shiftsp),len(exp_peaksp)))
for ind1, i in enumerate(scaled_shiftsp):
for ind2, j in enumerate(exp_peaksp):
diff_matrix[ind1,ind2] = j-i
prob_matrix = proton_probabilities(diff_matrix,scaled_mu,scaled_std)
b = abs(diff_matrix) >= 1
##############################find any rows that are all zeros
b = np.where(np.sum(prob_matrix, 1) == 0)
prob_matrix[b] = - np.inf
prob_matrix = np.delete(prob_matrix, b, 0)
unassignable_shifts = calculated_shiftsp[b]
ccalculated_shiftsp = np.delete(calculated_shiftsp, b)
##############################
prob_matrix = prob_matrix**2
prob_matrix = 1 - prob_matrix
vertical_ind, horizontal_ind = optimise(prob_matrix)
opt_peaksp = exp_peaksp[horizontal_ind]
opt_shiftsp = ccalculated_shiftsp[vertical_ind]
opt_labelsp = H_labelsp[vertical_ind]
opt_shifts, opt_peaks, opt_labels = removecrossassignments(opt_peaksp, opt_shiftsp, opt_labelsp)
################ combine these assignments
opt_peaks = np.hstack((opt_peaksm,opt_peaksp))
opt_shifts = np.hstack((opt_shiftsm,opt_shiftsp))
opt_labels = np.hstack((opt_labelsm,opt_labelsp))
#check for any shifts that have not been assigned
copyshifts = list(copy.copy(calculated_shifts))
copylabels = list(copy.copy(H_labels))
for shift,label in zip(opt_shifts,opt_labels):
copyshifts.remove(shift)
copylabels.remove(label)
#assign these to the closest peaks - regardless of integrals
for shift,label in zip(copyshifts,copylabels):
mindiff = np.array(exp_peaks - shift).argmin()
opt_peaks = np.append(opt_peaks,exp_peaks[mindiff])
opt_labels = np.append(opt_labels,label)
opt_shifts = np.append(opt_shifts,shift)
#### sort output wrt original H labels
indv = []
for label in opt_labels:
wh = np.where(H_labels == label)
indv.append(wh[0][0])
ind = np.argsort(opt_shifts)[::-1]
assigned_shifts = opt_shifts[indv]
assigned_peaks = opt_peaks[indv]
assigned_labels = opt_labels[indv]
ind = np.argsort(assigned_shifts)
assigned_shifts = assigned_shifts[ind].tolist()
assigned_peaks = assigned_peaks[ind].tolist()
assigned_labels = assigned_labels[ind].tolist()
lnum += 1
new_assigned_shifts =copy.copy(assigned_shifts)
new_assigned_peaks=copy.copy(assigned_peaks)
return assigned_shifts , assigned_peaks, assigned_labels, scaled_shifts
def external_scale_proton_shifts(calculated_shifts):
scaled = 0.9770793502768845 * calculated_shifts - 0.019505417520415236
return scaled
def internal_scale_proton_shifts(assigned_shifts,assigned_peaks,calculated_shifts):
slope, intercept, r_value, p_value, std_err = linregress(assigned_shifts, assigned_peaks)
scaled_shifts = calculated_shifts * slope + intercept
return scaled_shifts,slope,intercept
def proton_probabilities(diff_matrix,scaled_mu,scaled_std):
prob_matrix = norm.pdf(diff_matrix, scaled_mu, scaled_std) / norm.pdf(scaled_mu, scaled_mu, scaled_std)
return prob_matrix
def simulate_spectrum(spectral_xdata_ppm,calc_shifts):
y = np.zeros(len(spectral_xdata_ppm))
for shift in calc_shifts:
y += lorentzian(spectral_xdata_ppm,0.001,shift,0.2)
return y
def simulate_spectrum(spectral_xdata_ppm,calc_shifts,assigned_peaks,set_exp):
for ind,shift in enumerate(calc_shifts):
exp_p = assigned_peaks[ind]
ind2 = set_exp.index(exp_p)
y = lorentzian(spectral_xdata_ppm,0.001,shift,0.2)
plt.plot(spectral_xdata_ppm,y+1.05,color = 'C' + str(ind2 % 10))
def lorentzian(p, w, p0, A):
x = (p0 - p) / (w / 2)
L = A / (1 + x ** 2)
return L
def remove_labile_protons(sdffile,lbls,shifts):
f = sdffile.split('.sdf')[0] + '.sdf'
obconversion = OBConversion()
obconversion.SetInFormat("sdf")
obmol = OBMol()
obconversion.ReadFile(obmol, f)
CI = []
for atom in OBMolAtomIter(obmol):
if atom.GetAtomicNum() == 1:
for NbrAtom in OBAtomAtomIter(atom):
if (NbrAtom.GetAtomicNum() == 8):
CI.append( 'H' + str(atom.GetIndex() + 1))
#remove these carbons
for C in CI:
ind = lbls.index(C)
lbls.remove(C)
for l in shifts:
l.pop(ind)
return lbls,shifts
def removecrossassignments(exp,calc,labels):
#sort these in decending order
s = np.argsort(calc)[::-1]
calc = calc[s]
exp = exp[s]
labels = labels[s]
#generate difference matrix
switch = 0
expcopy = np.array(exp)
while switch == 0:
swapm = np.zeros([len(calc), len(calc)])
for i,Hi in enumerate(expcopy):
for j,Hj in enumerate(expcopy):
if i>j:
swapm[i, j] = 0
else:
swapm[i,j] = round(Hi - Hj,1)
w = np.argwhere(swapm < 0)
if len(w > 0):
expcopy[w[0]] = expcopy[w[0][::-1]]
else:
switch =1
return calc, expcopy,labels
def methyl_protons(file):
obconversion = OBConversion()
obconversion.SetInFormat("sdf")
obmol = OBMol()
obconversion.ReadFile(obmol, file)
methyl_protons = []
for atom in OBMolAtomIter(obmol):
count = 0
nbrprotons = []
for NbrAtom in OBAtomAtomIter(atom):
if (atom.GetAtomicNum() == 6) & (NbrAtom.GetAtomicNum() == 1):
l = NbrAtom.GetIndex()
count += 1
nbrprotons.append('H' + str(l + 1))
if count == 3:
methyl_protons.append(nbrprotons)
return methyl_protons