-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreduce_scale.py
75 lines (64 loc) · 2.55 KB
/
reduce_scale.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from feature_engineering.model_base import ModelBase
import pandas as pd
from get_reward import GetReward
from utility.model_utility import ModelUtility
def reduce_scale(all_data, args):
#reduce sample size
sample_size = min(args.core_size, all_data.shape[0])
features = args.continuous_col + args.discrete_col
label = args.target_col
all_data = all_data[features + [label]]
core_data = all_data.copy(deep = True)
#preprocessing core_data
get_reward_ins = GetReward(args)
res_tuple = get_reward_ins.feature_pipline_train([], core_data)
core_train, core_columns, core_label, fe_params, operation_idx_dict = res_tuple
core_data = pd.concat([pd.DataFrame(core_train), pd.DataFrame(core_label)], axis=1)
core_data.columns = features + [label]
limit = 100
ori_score = -100000
current_size = 0
step_size = sample_size // 10
time = 0
l1 = 0.3
l2 = 0.7
if args.eval_method == 'rmse' or args.eval_method == 'mse' or args.eval_method == 'mae':
l1 = -l1
l2 = -l2
if args.task_type == 'regression':
model = ModelBase.rf_regeression()
else:
model = ModelBase.rf_classify()
temp = None
new_data = None
while (current_size < sample_size and time < limit):
time += 1
res = core_data.sample(step_size, axis = 0, replace = False)
if new_data is None:
new_data = res.copy(deep = True)
else:
temp = new_data.copy(deep = True)
new_data = pd.concat([res, new_data], axis=0)
# get score
model.fit(new_data[features], new_data[label])
y_pred = model.predict(core_data[features])
y_pred_remain = model.predict(core_data.drop(new_data.index)[features])
if 'f1_average' in vars(args).keys():
f1_average = args.f1_average
else:
f1_average = None
score_all = ModelUtility.model_metrics(
y_pred, core_data[label].values, args.task_type, args.eval_method, f1_average)
score_remain = ModelUtility.model_metrics(
y_pred_remain, core_data.drop(new_data.index)[label].values, args.task_type, args.eval_method, f1_average)
#print(str(score_all)+','+str(score_remain))
score = score_all * l1 + score_remain * l2
print(str(score)+','+str(ori_score))
# bad re-back
if score < ori_score:
new_data = temp.copy(deep = True)
else:
current_size += step_size
ori_score = score
new_data.reset_index(drop=True, inplace=True)
return new_data