forked from dvschultz/dataset-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsort.py
302 lines (236 loc) · 8.72 KB
/
sort.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import argparse
import numpy as np
import os
import imutils
import cv2
import random
import shutil
def parse_args():
desc = "Tools to normalize an image dataset"
parser = argparse.ArgumentParser(description=desc)
parser.add_argument('-v','--verbose', action='store_true',
help='Print progress to console.')
parser.add_argument('--exact', action='store_true',
help='match to exact specs')
parser.add_argument('-i','--input_folder', type=str,
default='./input/',
help='Directory path to the inputs folder. (default: %(default)s)')
parser.add_argument('-o','--output_folder', type=str,
default='./output/',
help='Directory path to the outputs folder. (default: %(default)s)')
parser.add_argument('-p','--process_type', type=str,
default='exclude',
help='Process to use. ["exclude","sort","tagsort","lpips","channels"] (default: %(default)s)')
parser.add_argument('--max_size', type=int,
default=2048,
help='Maximum width or height of the output images. (default: %(default)s)')
parser.add_argument('--max_dist', type=float,
default=1.0,
help='Maximum distance between two images (for lpips process). (default: %(default)s)')
parser.add_argument('--min_size', type=int,
default=1024,
help='Maximum width or height of the output images. (default: %(default)s)')
parser.add_argument('--min_ratio', type=float,
default=1.0,
help='Ratio of image (height/width). (default: %(default)s)')
parser.add_argument('-n','--network', type=str,
default='alex',
help='Network to use for the LPIPS sort process. Options: alex, vgg, squeeze (default: %(default)s)')
parser.add_argument('-f','--file_extension', type=str,
default='png',
help='file type ["png","jpg"] (default: %(default)s)')
parser.add_argument('--skip_tags', type=str,
default=None,
help='comma separated color tags (for Mac only) (default: %(default)s)')
parser.add_argument('--start_img', type=str,
help='image for comparison (for lpips process)')
parser.add_argument('--use_gpu', action='store_true',
help='use GPU (for lpips process)')
args = parser.parse_args()
return args
def saveImage(img,path,filename):
if(args.file_extension == "png"):
new_file = os.path.splitext(filename)[0] + ".png"
cv2.imwrite(os.path.join(path, new_file), img, [cv2.IMWRITE_PNG_COMPRESSION, 0])
elif(args.file_extension == "jpg"):
new_file = os.path.splitext(filename)[0] + ".jpg"
cv2.imwrite(os.path.join(path, new_file), img, [cv2.IMWRITE_JPEG_QUALITY, 90])
def exclude(img,filename):
make_path = args.output_folder + "exclude_"+str(args.min_size)+"-"+str(args.max_size)+"/"
if not os.path.exists(make_path):
os.makedirs(make_path)
(h, w) = img.shape[:2]
if((h >= args.min_size) and (h <= args.max_size) and (w >= args.min_size) and (w <= args.max_size)):
if(args.file_extension == "png"):
new_file = os.path.splitext(filename)[0] + ".png"
cv2.imwrite(os.path.join(make_path, new_file), img, [cv2.IMWRITE_PNG_COMPRESSION, 0])
else:
new_file = os.path.splitext(filename)[0] + ".jpg"
cv2.imwrite(os.path.join(make_path, new_file), img, [cv2.IMWRITE_JPEG_QUALITY, 90])
def gray_color(img,filename):
gray_path = args.output_folder + "gray/"
color_path = args.output_folder + "color/"
if not os.path.exists(gray_path):
os.makedirs(gray_path)
if not os.path.exists(color_path):
os.makedirs(color_path)
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
mean, std = cv2.meanStdDev(hsv)
if(args.verbose): print(mean[1],std[1])
if(mean[1] >= 44.0):
saveImage(img,color_path,filename)
elif(mean[1] <= 10.0):
saveImage(img,gray_path,filename)
elif(std[1] >= 30.0):
saveImage(img,color_path,filename)
else:
saveImage(img,gray_path,filename)
def sort(img,filename):
make_path1 = args.output_folder + "yes/"
make_path2 = args.output_folder + "no/"
if not os.path.exists(make_path1):
os.makedirs(make_path1)
if not os.path.exists(make_path2):
os.makedirs(make_path2)
(h, w) = img.shape[:2]
ratio = h/w
if(args.exact == True):
if((ratio >= 1.0) and (h == args.max_size) and (w == args.min_size)):
path = make_path1
elif((ratio < 1.0) and (w == args.max_size) and (h == args.min_size)):
path = make_path1
else:
path = make_path2
else:
#only works with ratio right now
if(ratio>=args.min_ratio):
path = make_path1
else:
path = make_path2
if(args.file_extension == "png"):
new_file = os.path.splitext(filename)[0] + ".png"
cv2.imwrite(os.path.join(path, new_file), img, [cv2.IMWRITE_PNG_COMPRESSION, 0])
else:
new_file = os.path.splitext(filename)[0] + ".jpg"
cv2.imwrite(os.path.join(path, new_file), img, [cv2.IMWRITE_JPEG_QUALITY, 90])
# def lpipssort(img,filename):
def processImage(img,filename,tag=None):
if args.process_type == "exclude":
exclude(img,filename)
if args.process_type == "gray_color":
gray_color(img,filename)
if args.process_type == "sort":
sort(img,filename)
if args.process_type == "tagsort":
tagsort(img,filename,tag)
def main():
global args
global count
global inter
args = parse_args()
count = int(0)
inter = cv2.INTER_CUBIC
os.environ['OPENCV_IO_ENABLE_JASPER']= "true"
if os.path.isdir(args.input_folder):
print("Processing folder: " + args.input_folder)
elif os.path.isfile(args.input_folder):
img = cv2.imread(args.input_folder)
filename = args.input_folder.split('/')[-1]
if hasattr(img, 'copy'):
if(args.verbose): print('processing image: ' + filename)
processImage(img,os.path.splitext(filename)[0])
else:
print("Not a working input_folder path: " + args.input_folder)
return;
for root, subdirs, files in os.walk(args.input_folder):
if(args.verbose): print('--\nroot = ' + root)
for subdir in subdirs:
if(args.verbose): print('\t- subdirectory ' + subdir)
# sort using LPIPS
if(args.process_type == "lpips"):
import lpips
loss_fn = lpips.LPIPS(net=args.network,version='0.1')
img0 = lpips.im2tensor(lpips.load_image(args.start_img))
if not os.path.exists(args.output_folder):
os.makedirs(args.output_folder)
if(args.use_gpu):
loss_fn.cuda()
img0 = img0.cuda()
for filename in files:
file_path = os.path.join(root, filename)
img1 = lpips.im2tensor(lpips.load_image(file_path))
if(args.use_gpu):
img1 = img1.cuda()
dist01 = loss_fn.forward(img0,img1)
if(args.verbose): print('%s Distance: %.3f'%(filename,dist01))
if(dist01 <= args.max_dist):
new_path = os.path.join(args.output_folder, filename)
shutil.copy2(file_path,new_path)
continue
# sort by channel count
elif(args.process_type=='channels'):
if not os.path.exists(args.output_folder):
os.makedirs(args.output_folder)
gray_path = os.path.join(args.output_folder,'gray')
if not os.path.exists(gray_path):
os.makedirs(gray_path)
rgb_path = os.path.join(args.output_folder,'rgb')
if not os.path.exists(rgb_path):
os.makedirs(rgb_path)
rgba_path = os.path.join(args.output_folder,'rgba')
if not os.path.exists(rgba_path):
os.makedirs(rgba_path)
for filename in files:
file_path = os.path.join(root, filename)
img = cv2.imread(file_path, cv2.IMREAD_UNCHANGED)
if hasattr(img, 'copy'):
print(img.shape[-1])
if(img.shape[-1] <= 3):
new_path = os.path.join(rgb_path, filename)
shutil.copy2(file_path,new_path)
elif(img.shape[-1] == 4):
new_path = os.path.join(rgba_path, filename)
shutil.copy2(file_path,new_path)
else:
new_path = os.path.join(gray_path, filename)
shutil.copy2(file_path,new_path)
continue
# all other tools
else:
for filename in files:
skipped = False
file_path = os.path.join(root, filename)
if(args.verbose): print('\t- file %s (full path: %s)' % (filename, file_path))
if(args.process_type == "tagsort"):
import mac_tag
tags = mac_tag.get(file_path)
if(len(tags[file_path])>0):
ts = tags[file_path]
for t in ts:
tagpath = os.path.join(args.output_folder, t)
if not os.path.exists(tagpath):
os.makedirs(tagpath)
new_path = os.path.join(tagpath, filename)
shutil.copy2(file_path,new_path)
continue
if(args.skip_tags != None):
import mac_tag
tags = [str(item) for item in args.skip_tags.split(',')]
# tags = mac_tag.get(file_path)
# print(tags)
for tag in tags:
matches = mac_tag.match(tag,file_path)
if(file_path in matches):
print('skipping file: ' + filename)
new_path = os.path.join(args.output_folder, filename)
shutil.copy2(file_path,new_path)
mac_tag.add([tag],[new_path])
skipped = True
continue
if not skipped:
img = cv2.imread(file_path)
if hasattr(img, 'copy'):
processImage(img,filename)
count = count + int(2)
if __name__ == "__main__":
main()