forked from dvschultz/stylegan2-ada-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflesh_digression.py
182 lines (142 loc) · 8.18 KB
/
flesh_digression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#
# ~~ Flesh Digressions ~~
# Or, Circular Interpolation of the StyleGAN Synthesis Network's Constant Layer
# ~~~ aydao ~~~~ 2020 ~~~
#
# Based on halcy's circular interpolation script https://pastebin.com/RTtV2UY7
# Pytorch port
import argparse
import math
from datetime import datetime
from typing import Optional, Tuple, Union, List
import moviepy.editor
import numpy as np
import torch
from numpy import linalg
import dnnlib
import legacy
def circular_interpolation(radius: float, latents_persistent: Tuple[np.ndarray, np.ndarray, np.ndarray], circle_pos: float) -> np.ndarray:
latents_a, latents_b, latents_c = latents_persistent
latents_axis_x = (latents_a - latents_b).flatten() / linalg.norm(latents_a - latents_b)
latents_axis_y = (latents_a - latents_c).flatten() / linalg.norm(latents_a - latents_c)
latents_x = math.sin(math.pi * 2.0 * circle_pos) * radius
latents_y = math.cos(math.pi * 2.0 * circle_pos) * radius
latents = latents_a + latents_x * latents_axis_x + latents_y * latents_axis_y
return latents
def image_from_latent(G: torch.nn.Module, psi: float, z: np.ndarray, device: torch.device) -> np.ndarray:
"""Helper to genereate numpy array in RGB from numpy Z space vector"""
z_tensor = torch.from_numpy(z).to(device)
img = G(z_tensor, None, truncation_psi = psi, noise_mode = "const")
# Convert NCHW to NHWC and cast to uint8
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
return img[0].cpu().numpy()
def size_range(s: str) -> List[int]:
'''Accept a range 'a-c' and return as a list of 2 ints.'''
return [int(v) for v in s.split('-')][::-1]
def seed_values(s: str) -> List[int]:
'''Accept seeds 'a,b,c' and return as a list of 3 ints.'''
return [int(v) for v in s.split(',')]
def generate_from_generator_adaptive(psi: float, radius_large: float, radius_small: float, step1: float, step2:float, video_length: float, seed: Optional[int], seeds: Optional[List], G: torch.nn.Module, device: torch.device):
# psi = args.psi # 0.7
# radius_large = args.radius_large # 600.0
# radius_small = args.radius_small # 40.0
current_position_increment = step1 # 0.005
current_position_style_increment = step2 # 0.0025
# video_length = args.video_length # 1.0
# output_format = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
# latents for the circular interpolation in latent space
if seed:
rnd = np.random.RandomState(seed)
else:
rnd = np.random
if seeds is None:
latents_a = rnd.randn(1, G.z_dim)
latents_b = rnd.randn(1, G.z_dim)
latents_c = rnd.randn(1, G.z_dim)
else:
if(len(seeds) is not 3):
print('you must set 3 seed values!')
print(seeds)
latents_a = np.random.RandomState(int(seeds[0])).randn(1, G.z_dim)
latents_b = np.random.RandomState(int(seeds[1])).randn(1, G.z_dim)
latents_c = np.random.RandomState(int(seeds[2])).randn(1, G.z_dim)
latents_persistent_small = (latents_a, latents_b, latents_c)
# latents for the circular interpolation of the unrolled constant layer
latent_size = G.z_dim # latent z space size
constant_layer_size = 4 # default StyleGAN constant layer size is 4x4
# const_layer_total = 8192
constant_layer_total = G.synthesis.b4.const.data.flatten().size()[0] # type: ignore
latents_aa = rnd.randn(1, constant_layer_total)
latents_bb = rnd.randn(1, constant_layer_total)
latents_cc = rnd.randn(1, constant_layer_total)
latents_persistent_large = (latents_aa, latents_bb, latents_cc)
# initialize the circular interpolation
current_position = 0.0
current_position_style = 0.0
current_latent = circular_interpolation(radius_small, latents_persistent_small, current_position)
current_image = image_from_latent(G, psi, current_latent, device)
output_frames = []
# Create the frames while interpolating along the circle, in both the latent space and the constant layer
while(current_position_style < video_length):
current_position += current_position_increment
current_position_style += current_position_style_increment
# interpolate the weights of the constant layer
w = next(layer for name, layer in G.named_parameters() if name == 'synthesis.b4.const')
# make a copy of the orig constant layer weights
v1 = w.detach().clone()
# unroll the constant layer
v2 = v1.clone().reshape(1, constant_layer_total)
with torch.no_grad():
v2 += torch.from_numpy(circular_interpolation(radius_large, latents_persistent_large, current_position + np.pi)).to(device)
v2 = v2.reshape(G.synthesis.b4.const.data.size()) # type: ignore
G.synthesis.b4.const.copy_(v2) # type: ignore
# interpolate along the latent space
current_latent = circular_interpolation(radius_small, latents_persistent_small, current_position_style)
current_image = image_from_latent(G, psi, current_latent, device)
output_frames.append(current_image)
G.synthesis.b4.const.copy_(v1) # type: ignore
# stops at 1.0 (or whatever value to which video_length is set)
print('Stopping at',video_length,'currently at',current_position_style, flush=True)
return output_frames
def main(pkl: str, psi: float, radius_large: float, radius_small:float, step1: float, step2: float, seed: Optional[int], video_length: float=1.0, size: int=None, seeds: int=None, scale_type: str='pad'):
if(size):
print('render custom size: ',size)
print('padding method:', scale_type )
custom = True
else:
custom = False
G_kwargs = dnnlib.EasyDict()
G_kwargs.size = size
G_kwargs.scale_type = scale_type
print('Loading networks from "%s"...' % pkl)
device = torch.device('cuda')
with dnnlib.util.open_url(pkl) as f:
G = legacy.load_network_pkl(f, custom=custom, **G_kwargs)['G_ema'].to(device) # type: ignore
frames = generate_from_generator_adaptive(psi,radius_large,radius_small,step1,step2,video_length,seed,seeds,G,device)
frames = moviepy.editor.ImageSequenceClip(frames, fps=30)
# Generate video at the current date and timestamp
timestamp = datetime.now().strftime("%d-%m-%Y-%I-%M-%S-%p")
mp4_file = './circular-'+timestamp+'.mp4'
mp4_codec = 'libx264'
mp4_bitrate = '15M'
mp4_fps = 24 # 20
frames.write_videofile(mp4_file, fps=mp4_fps, codec=mp4_codec, bitrate=mp4_bitrate)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='Creates a video of a circular interpolation of the constant layer for an input StyleGAN model.',
formatter_class=argparse.RawDescriptionHelpFormatter
)
parser.add_argument('--pkl', help='A .pkl of a StyleGAN network model', required=True)
parser.add_argument('--psi', help='The truncation psi used in the generator', default=0.7, type=float)
parser.add_argument('--radius_large', help='The radius for the constant layer interpolation', default=300.0, type=float)
parser.add_argument('--radius_small', help='The radius for the latent space interpolation', default=40.0, type=float)
parser.add_argument('--step1', help='The value of the step/increment for the constant layer interpolation', default=0.005, type=float)
parser.add_argument('--step2', help='The value of the step/increment for the latent space interpolation', default=0.0025, type=float)
parser.add_argument('--seed', help='Seed value for random state', default=None, type=int)
parser.add_argument('--seeds', help='Three comma separated seed values for circluar interpolation', default=None, type=seed_values)
parser.add_argument('--size', help='Size of output (in format x-y)', default=None, type=size_range)
parser.add_argument('--scale_type', help='Options: pad, padside, symm, symmside', default='pad', type=str)
parser.add_argument('--video_length', help='The length of the video in terms of circular interpolation (recommended to keep at 1.0)', default=1.0, type=float)
args = parser.parse_args()
print(args.seeds)
main(args.pkl, args.psi, args.radius_large, args.radius_small, args.step1, args.step2, args.seed, args.video_length, args.size, args.seeds, args.scale_type)