-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathpretokenize.py
89 lines (69 loc) · 3.4 KB
/
pretokenize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
"""
Download and pre-tokenize a huggingface dataset.
Based on: https://github.com/conceptofmind/PaLM/blob/main/palm/build_dataloaders.py
Usage:
python build_dataloaders.py --tokenizer EleutherAI/gpt-neox-20b --dataset openwebtext --text_field text --sequence_length 2048
"""
import os
import time
import json
import argparse
import multiprocessing
from loguru import logger
from datasets import load_dataset, DatasetDict, Dataset
from transformers import AutoTokenizer
from peft_pretraining.dataloader import tokenize_and_chunk
def parse_args(args=None):
parser = argparse.ArgumentParser()
parser.add_argument("--tokenizer", type=str, required=True, help="HuggingFace tokenizer name")
parser.add_argument("--dataset", type=str, required=True, help="HuggingFace dataset name. E.g., wikitext")
parser.add_argument("--dataset_config", type=str, default=None, help="HuggingFace dataset config name. E.g., wikitext-2-v1")
parser.add_argument("--text_field", type=str, default="text", help="Name of the text field in the dataset")
parser.add_argument("--sequence_length", type=int, default=2048, help="Sequence length")
parser.add_argument("--num_cpu", type=int, default=multiprocessing.cpu_count(), help="Number of CPU cores")
parser.add_argument("--save_dir", type=str, required=True, help="Directory to save the pre-tokenized dataset")
parser.add_argument("--take", type=int, default=None, help="Number of examples to take from the dataset")
args = parser.parse_args(args)
return args
def main(args):
print("In main")
logger.info("*" * 40)
logger.info(f"Starting script with the arguments")
for k, v in vars(args).items():
logger.info(f"{k:30} {v}")
logger.info("*" * 40)
_tokenizer_name_for_save = args.tokenizer.replace("/", "_")
save_path = os.path.join(args.save_dir, f"{args.dataset}_{_tokenizer_name_for_save}_{args.sequence_length}")
if args.dataset_config is not None:
save_path = os.path.join(args.save_dir, f"{args.dataset}_{args.dataset_config}_{_tokenizer_name_for_save}_{args.sequence_length}")
if os.path.exists(save_path):
raise ValueError(f"Path {save_path} already exists")
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer)
logger.info(f"Loaidng the dataset in streaming mode: {args.take is not None}")
dataset = load_dataset(args.dataset, args.dataset_config, streaming=args.take is not None)
if args.take is not None:
logger.info(f"Taking {args.take} examples from the dataset")
def take(ds, n):
return Dataset.from_generator(lambda: (yield from ds.take(n)))
dataset_dict = {k: take(v, args.take) for k, v in dataset.items()}
dataset = DatasetDict(dataset_dict)
logger.info("Tokenizing and chunking the dataset")
_time = time.time()
dataset = tokenize_and_chunk(
tokenizer=tokenizer,
dataset=dataset,
text_field=args.text_field,
sequence_length=args.sequence_length,
num_cpu=args.num_cpu,
)
_hours = (time.time() - _time) / 3600
logger.info(f"Tokenization and chunking took {_hours:.2f} hours")
dataset.save_to_disk(save_path)
logger.info(f"Saved the dataset to {save_path}")
with open(os.path.join(save_path, "args.json"), "w") as f:
json.dump(vars(args), f, indent=4)
print("In main")
if __name__ == "__main__":
print("Starting the script")
args = parse_args()
main(args)