-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfood_detection.py
65 lines (55 loc) ยท 2.25 KB
/
food_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from PIL import Image
import cv2
import numpy as np
import os
from fastapi import UploadFile
def detect_and_crop_image(image: UploadFile, output_dir):
# Yolo ๋ก๋
net = cv2.dnn.readNet("yolov2-tiny.weights", "yolov2-tiny.cfg")
classes = []
with open("coco.names", "r") as f:
classes = [line.strip() for line in f.readlines()]
layer_names = net.getLayerNames()
output_layers = [layer_names[i - 1] for i in net.getUnconnectedOutLayers()]
colors = np.random.uniform(0, 255, size=(len(classes), 3))
# ์ด๋ฏธ์ง ๊ฐ์ ธ์ค๊ธฐ
content = image.file.read()
img = cv2.imdecode(np.fromstring(content, np.uint8), cv2.IMREAD_COLOR)
img = cv2.resize(img, None, fx=0.8, fy=0.8)
height, width, channels = img.shape
# ์ด๋ฏธ์ง ๊ฐ์ง
blob = cv2.dnn.blobFromImage(img, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(output_layers)
# ์ ๋ณด๋ฅผ ํ๋ฉด์ ํ์
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
# ์ฌ์ง ํ์
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
# ์ขํ ์ถ์ถ
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
color = colors[i]
cv2.rectangle(img, (x, y), (x + w, y + h), color, 2)
img_np = np.array(img)
img_bgr = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
image_to_crop = Image.fromarray(img_bgr)
food = image_to_crop.crop((x, y, x + w, y + h))
food.save(os.path.join(output_dir, f'image_{i + 1}.png'))