-
Notifications
You must be signed in to change notification settings - Fork 0
/
math.cpp
138 lines (118 loc) · 3.44 KB
/
math.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#include <vector>
#include <cassert>
#include <cmath>
#include <iostream>
#include "math.h"
Matrix::Matrix(int r, int c) : m(std::vector<std::vector<float> >(r, std::vector<float>(c, 0.f))), rows(r), cols(c) { }
int Matrix::nrows() {
return rows;
}
int Matrix::ncols() {
return cols;
}
Matrix Matrix::identity(int dimensions) {
Matrix E(dimensions, dimensions);
for (int i=0; i<dimensions; i++) {
for (int j=0; j<dimensions; j++) {
E[i][j] = (i==j ? 1.f : 0.f);
}
}
return E;
}
std::vector<float>& Matrix::operator[](const int i) {
assert(i>=0 && i<rows);
return m[i];
}
Matrix Matrix::operator*(const Matrix& a) {
assert(cols == a.rows);
Matrix result(rows, a.cols);
for (int i=0; i<rows; i++) {
for (int j=0; j<a.cols; j++) {
result.m[i][j] = 0.f;
for (int k=0; k<cols; k++) {
result.m[i][j] += m[i][k]*a.m[k][j];
}
}
}
return result;
}
Matrix Matrix::transpose() {
Matrix result(cols, rows);
for(int i=0; i<rows; i++)
for(int j=0; j<cols; j++)
result[j][i] = m[i][j];
return result;
}
Matrix Matrix::inverse() {
assert(rows == cols);
Matrix result(rows, cols * 2);
for(int i = 0; i < rows; i++) {
for(int j = 0; j < cols; j++) {
result[i][j] = m[i][j];
}
}
for(int i = 0; i < rows; i++) {
result[i][i + cols] = 1;
}
for (int i = 0; i < rows - 1; i++) {
// normalize the first row
float firstRowVal = result[i][i];
if (firstRowVal == 0) {
// 处理除以零的情况,例如通过交换行来避免
for (int k = i + 1; k < rows; k++) {
if (result[k][i] != 0) {
// 交换行i和行k
for (int j = 0; j < result.cols; j++) {
float temp = result[i][j];
result[i][j] = result[k][j];
result[k][j] = temp;
}
break;
}
}
firstRowVal = result[i][i];
}
for (int j = result.cols - 1; j >= 0; j--) {
result[i][j] /= firstRowVal;
}
for (int k = i + 1; k < rows; k++) {
float coeff = result[k][i];
for (int j = 0; j < result.cols; j++) {
result[k][j] -= result[i][j] * coeff;
}
}
}
// normalize the last row
float lastRowVal = result[rows - 1][rows - 1];
if (lastRowVal != 0) {
for (int j = result.cols - 1; j >= rows - 1; j--) {
result[rows - 1][j] /= lastRowVal;
}
}
for (int i = rows - 1; i > 0; i--) {
for (int k = i - 1; k >= 0; k--) {
float coeff = result[k][i];
for (int j = 0; j < result.cols; j++) {
result[k][j] -= result[i][j] * coeff;
}
}
}
// cut the identity matrix back
Matrix truncate(rows, cols);
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
truncate[i][j] = result[i][j + cols];
}
}
return truncate;
}
std::ostream& operator<<(std::ostream& s, Matrix& m) {
for (int i=0; i<m.nrows(); i++) {
for (int j=0; j<m.ncols(); j++) {
s << m[i][j];
if (j<m.ncols()-1) s << "\t";
}
s << "\n";
}
return s;
}