-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patheval_cluster_utils.py
382 lines (323 loc) · 16.2 KB
/
eval_cluster_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
"""
Eval ood performance cifar100 -> cifar10
"""
import argparse
import json
import os
from collections import defaultdict
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from sklearn.metrics import mutual_info_score
from sklearn.metrics import normalized_mutual_info_score
from sklearn.metrics import roc_auc_score
from torch import linalg
from torch import nn
from torch.utils.data import Dataset
from tqdm import tqdm
import utils
from linear_evaluation import ModelEval
from loaders import get_dataset
from model_builders import load_model
def get_occupied_classes(train_features, plot=True , path='./', return_class_indices=False,
name='fig_occupied_classes_box_plot.png'):
class_weights = train_features.mean(dim=0)
# avg class probability
threshhold = class_weights.mean()
occupied_classes_idx = (class_weights> (threshhold))
occupied_classes = occupied_classes_idx.sum()
if plot:
sorted_np_array = np.sort(class_weights.cpu().view(-1).numpy())[-occupied_classes:]
ids = [i for i in range(sorted_np_array.shape[0])]
_ = plt.bar(ids,sorted_np_array, label=name)
plt.legend()
#plt.savefig(os.path.join(path, name))
return occupied_classes, occupied_classes_idx
def pk_statistics(features, config):
pkx = (features / config.teacher_temp).softmax(dim=-1)
labels = pkx.argmax(dim=-1)
occupied_classes = len(torch.unique(labels))
entropy = -(pkx * pkx.log()).sum(dim=-1).mean()
pk = pkx.mean(dim=0)
return pk, entropy, occupied_classes
def _kl_div(p, q):
return (p * (p / q).log()).sum()
def _jsd(p, q):
m = 0.5 * (p + q)
return 0.5 * _kl_div(p, m) + 0.5 * _kl_div(q, m)
def jsd_to_train(pk_train, pk_test, pk_test_ood):
return _jsd(pk_train, pk_test), _jsd(pk_train, pk_test_ood)
def compute_spmi(train_features, test_features, config):
pkx = (train_features / config.teacher_temp).softmax(dim=-1)
pk = pkx.mean(dim=0)
pkx_test = (test_features / config.teacher_temp).softmax(dim=-1)
spmi = (pkx**2 / pk).sum(dim=-1).mean()
spmi_test = (pkx_test**2 / pk).sum(dim=-1).mean()
return spmi.item(), spmi_test.item()
@torch.no_grad()
def knn_classifier(train_features, train_labels, test_features, test_labels, k, T, num_classes):
if isinstance(train_labels, np.ndarray):
train_labels = torch.from_numpy(train_labels).cuda()
test_labels = torch.from_numpy(test_labels).cuda()
train_features = nn.functional.normalize(train_features, dim=1, p=2)
test_features = nn.functional.normalize(test_features, dim=1, p=2)
top1, top5, total = 0.0, 0.0, 0
train_features = train_features.t()
num_test_images, num_chunks = test_labels.shape[0], 100
imgs_per_chunk = num_test_images // num_chunks
retrieval_one_hot = torch.zeros(k, num_classes).to(train_features.device)
for idx in range(0, num_test_images, imgs_per_chunk):
# get the features for test images
features = test_features[
idx : min((idx + imgs_per_chunk), num_test_images), :]
targets = test_labels[idx : min((idx + imgs_per_chunk), num_test_images)]
batch_size = targets.shape[0]
# calculate the dot product and compute top-k neighbors
similarity = torch.mm(features, train_features)
distances, indices = similarity.topk(k, largest=True, sorted=True)
candidates = train_labels.view(1, -1).expand(batch_size, -1)
retrieved_neighbors = torch.gather(candidates, 1, indices)
retrieval_one_hot.resize_(batch_size * k, num_classes).zero_()
retrieval_one_hot.scatter_(1, retrieved_neighbors.view(-1, 1), 1)
distances_transform = distances.clone().div_(T).exp_()
temp = torch.mul(
retrieval_one_hot.view(batch_size, -1, num_classes),
distances_transform.view(batch_size, -1, 1),
)
probs = torch.sum(temp,1)
_, predictions = probs.sort(1, True)
# find the predictions that match the target
correct = predictions.eq(targets.data.view(-1, 1))
top1 = top1 + correct.narrow(1, 0, 1).sum().item()
top5 = top5 + correct.narrow(1, 0, min(5, k)).sum().item() # top5 does not make sense if k < 5
total += targets.size(0)
top1 = top1 * 100.0 / total
top5 = top5 * 100.0 / total
return top1, top5
class FeatureExtractionPipeline:
def __init__(self, args, cache_backbone=False, datapath='./data'):
if not args.head and cache_backbone:
raise ValueError("head must be True if cache_backbone is True")
self.args = args
self.cache_backbone = cache_backbone
self.embeds = None
self.model, transform = load_model(self.args, head=args.head)
self.model.cuda().eval()
if not self.cache_backbone:
self.model = nn.DataParallel(self.model)
if args.lin_eval:
backbone = self.model
embed_dim = utils.embed_dim(self.args, self.model)
num_classes = 100 if args.dataset=='CIFAR100' else 10
self.model = ModelEval(backbone, embed_dim, args.hidden_dim, args.bottleneck_dim,
num_classes,args.nlayers,args.linear_only)
precompute_arch = args.arch if args.precomputed else None
dataset_train = get_dataset(args.dataset, datapath=datapath,
train=True,
download=True, transform=transform,
precompute_arch=precompute_arch)
dataset_val = get_dataset(args.dataset, datapath=datapath,
train=False,
download=True, transform=transform,
precompute_arch=precompute_arch)
for ds_name, dataset in zip(["dataset_labels", "val_labels", "test_labels"],
[dataset_train, dataset_val]):
if dataset is not None:
try:
setattr(self, ds_name, np.array(dataset.targets, dtype=np.int64))
except AttributeError:
setattr(self, ds_name, np.array(dataset.labels, dtype=np.int64))
else:
setattr(self, ds_name, None)
batch_size = args.batch_size_per_gpu or args.batch_size
self.data_loader_train = torch.utils.data.DataLoader(
dataset_train,
shuffle=False,
batch_size=batch_size,
num_workers=args.num_workers,
pin_memory=True,
drop_last=False,
)
self.data_loader_val = torch.utils.data.DataLoader(
dataset_val,
shuffle=False,
batch_size=batch_size,
num_workers=args.num_workers,
pin_memory=True,
drop_last=False,
)
@property
def cached(self):
return self.embeds is not None
@torch.no_grad()
def get_features(self, pretrained_weights):
if isinstance(self.model, nn.DataParallel):
module = self.model.module
else:
module = self.model
if self.args.lin_eval:
utils.load_pretrained_weights(module,
pretrained_weights,
self.args.checkpoint_key,
head=True,
head_only=False)
else:
utils.load_pretrained_weights(module,
pretrained_weights,
self.args.checkpoint_key,
head=self.args.head,
head_only=self.cached)
self.model.eval()
if not self.cache_backbone:
train_features = extract_features(self.model, self.data_loader_train, self.args.head)
test_features = extract_features(self.model, self.data_loader_val, self.args.head)
else:
embeds = self.get_embeds()
train_features = self.head_features(embeds['train'])
test_features = self.head_features(embeds['test'])
print(f"Train feats {train_features.shape}")
return train_features, test_features, self.dataset_labels, self.val_labels
@torch.no_grad()
def head_features(self, embed):
features = []
for samples in embed:
samples = samples.cuda()
features.append(self.model.head(samples).cpu())
return torch.cat(features)
@torch.no_grad()
def get_embeds(self):
if self.embeds is not None:
print('Using cached embedding')
return self.embeds
print('Compute embeddings')
embeds = defaultdict(list)
for k, loader in zip(['train', 'test'],
[self.data_loader_train, self.data_loader_val]):
if loader is None:
continue
for samples, _ in tqdm(loader):
if not isinstance(samples, list):
samples = [samples]
samples = torch.cat([im.cuda(non_blocking=True) for im in samples])
output = self.model.backbone_embed(samples)
embeds[k].append(output.cpu())
self.embeds = embeds
return embeds
@torch.no_grad()
def extract_features(model, data_loader, head):
features = []
for (samples, _) in tqdm(data_loader):
if not isinstance(samples, list):
samples = [samples]
samples = torch.cat([im.cuda(non_blocking=True) for im in samples])
if head:
try:
feats, _ = model(samples)
except Exception:
feats = model(samples)
else:
feats = model(samples)
features.append(feats.cpu())
return torch.cat(features, dim=0)
def norm_by_name(x, norm):
if norm == "softmax":
return x.softmax(dim=-1)
elif norm == "l2":
return torch.nn.functional.normalize(x, dim=-1, p=2)
elif norm == "l1":
return torch.nn.functional.normalize(x, dim=-1, p=1)
return x
def norm_feats(*features, norm="softmax"):
return [norm_by_name(x, norm) for x in features]
@torch.no_grad()
def calc_maha_distance(embeds, means_c, inv_cov_c):
diff = embeds - means_c
#dist = np.matmul(np.matmul(diff, inv_cov_c),diff.T)
dist = np.matmul(diff,inv_cov_c)*diff
dist = np.sum(dist,axis=1)
return dist
@torch.no_grad()
def OOD_classifier_maha(train_embeds_in, train_labels_in, test_embeds_in, test_embeds_outs, num_classes,
relative=False, std_all=False):
class_covs = []
class_means = []
used_classes = 0
# calculate class-wise means and covariances
for c in range(num_classes):
train_embeds_c = train_embeds_in[np.where(train_labels_in == c)]
if len(train_embeds_c)>1:
class_mean = np.mean(train_embeds_c, axis = 0)
cov = np.cov((train_embeds_c - (class_mean.reshape([1,-1]))).T )
class_covs.append(cov)
class_means.append(class_mean)
used_classes += 1
# class-wise std estimation
if not std_all:
cov_invs = np.linalg.inv(np.mean(np.stack(class_covs, axis=0),axis=0))
else:
# estimating the global std from train data
avg_train_mean = np.mean(train_embeds_in, axis=0)
cov_invs = np.linalg.inv(np.cov((train_embeds_in-avg_train_mean.reshape([1,-1])).T))
scores_in_dist = [calc_maha_distance(test_embeds_in, class_means[c], cov_invs) for c in range(used_classes)]
scores_out_dist = [calc_maha_distance(test_embeds_outs, class_means[c], cov_invs) for c in range(used_classes)]
# classes X num_data
scores_in_dist = np.stack(scores_in_dist)
scores_out_dist = np.stack(scores_out_dist)
if relative == True:
avg_train_mean = np.mean(train_embeds_in, axis=0)
avg_train_inv_cov = np.linalg.inv(np.cov((train_embeds_in-avg_train_mean.reshape([1,-1])).T))
avg_train_score_in = calc_maha_distance(test_embeds_in, avg_train_mean , avg_train_inv_cov )
avg_train_score_out = calc_maha_distance(test_embeds_outs, avg_train_mean , avg_train_inv_cov)
scores_in_dist -= avg_train_score_in
scores_out_dist -= avg_train_score_out
# Get OOD score for each datapoint
scores_in_dist = -np.min(scores_in_dist, axis=0)
scores_out_dist = -np.min(scores_out_dist, axis=0)
scores = np.concatenate([scores_in_dist, scores_out_dist])
return scores
def get_eval_args(notebook=False):
parser = argparse.ArgumentParser('Evaluation')
parser.add_argument('--batch_size_per_gpu', default=512, type=int, help='Per-GPU batch-size')
parser.add_argument('--temperature', default=0.02, type=float,
help='Temperature used in the voting coefficient')
parser.add_argument('--pretrained_weights', default='', type=str, help="Path to pretrained weights to evaluate.")
parser.add_argument('--out_dim', default=100, type=int)
parser.add_argument('--head', default=True, type=utils.bool_flag,
help="Whether to load the DINO head")
parser.add_argument('--vit_image_size', type=int, default=224, help="""image size that enters vit;
must match with patch_size: num_patches = (vit_image_size/patch_size)**2""")
parser.add_argument('--datapath', default='./data', type=str)
parser.add_argument('--use_bn_in_head', default=False, type=utils.bool_flag,
help="Whether to use batch normalizations in projection head (Default: False)")
parser.add_argument('--norm_last_layer', default=False, type=utils.bool_flag,
help="""Whether or not to weight normalize the last layer of the DINO head.
Not normalizing leads to better performance but can make the training unstable.
In our experiments, we typically set this paramater to False with vit_small and True with vit_base.""")
parser.add_argument('--dataset', default='CIFAR100', choices=['CIFAR100', 'CIFAR10', "STL10", \
"CIFAR20", "IN1K", "IN50", 'IN100', "IN200"], type=str)
parser.add_argument('--use_cuda', default=True, type=utils.bool_flag,
help="Should we store the features on GPU? We recommend setting this to False if you encounter OOM")
parser.add_argument('--arch', default='vit_small', type=str, help='Architecture')
parser.add_argument('--patch_size', default=16, type=int, help='Patch resolution of the model.')
parser.add_argument("--checkpoint_key", default="teacher", type=str,
help='Key to use in the checkpoint (example: "teacher")')
parser.add_argument('--num_workers', default=8, type=int, help='Number of data loading workers per GPU.')
parser.add_argument('--image_size', type=int, default=32, help="""image size that enters vit;
must match with patch_size: num_patches = (vit_image_size/patch_size)**2""")
parser.add_argument('--crops_scale', type=float, nargs='+', default=(0.8, 1.),
help="""Scale range of the cropped image before resizing, relatively to the origin image.
Used for large global view cropping.""")
parser.add_argument('--crops_number', type=int, default=1, help="""Number of
local views to generate. Set this parameter to 0 to disable multi-crop training.""")
parser.add_argument('--nlayers', default=2, type=int, help='Head layers')
parser.add_argument('--hidden_dim', default=512, type=int, help="Head's hidden dim")
parser.add_argument('--bottleneck_dim', default=256, type=int, help="Head's bottleneck dim")
parser.add_argument('--l2_norm', default=False, help="Whether to apply L2 norm after backbone")
parser.add_argument('--ckpt_folder', type=str)
parser.add_argument('--no_cache', action='store_true', default=False, help='Whether to cache backbone results')
parser.add_argument('--ignore_hp_file', action='store_true', default=False, help='Whether to ignore hp.json')
parser.add_argument('--lin_eval', default=False, help='True if the model has a backbone and linear layer.')
parser.add_argument('--linear_only', default=False, type=utils.bool_flag, help='True if head is only a linear layer.')
return parser.parse_args() if notebook is False else parser.parse_args("")