<script src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
skipTags: ['script', 'noscript', 'style', 'textarea', 'pre'],
inlineMath: [['$','$']]
}
});
</script>
对于弹塑性体系,动力学方程式如下所示:
$m\ddot{u}+c\dot{u}+f_{s}(u,\dot{u})=-m\ddot{u_{g}}(t)$
对上式进行积分,得到如下公式:
$\int_{0}^{u}m\ddot{u}du+\int_{0}^{u}c\dot{u}du+\int_{0}^{u}f_{s}(u,\dot{u})du=-\int_{0}^{u}m\ddot{u_{g}}(t)du$
动能:
$E_{K}=\int_{0}^{u}m\ddot{u}du=\int_{0}^{u}m\dot{u}d\dot{u}=\frac{1}{2}m\dot{u}^{2}$
阻尼耗能:
$E_{D}=\int_{0}^{u}c\dot{u}du$
应变能:
$E_{S}=\int_{0}^{u}f_{s}(u,\dot{u})du$
应变能$E_{S}$包括弹性应变能、塑性应变能、速度型阻尼器耗能以及位移型阻尼器耗能。
外力做功:
$E_{I}=\int_{0}^{u}m\ddot{u_{g}}(t)du$
总能量:
$E_{T}=E_{I}-E_{K}-E_{D}-E_{S}$,$E_{T}$实际为计算误差。