From 94cf54a6f3174bf03835be2d3f6b26f190012150 Mon Sep 17 00:00:00 2001 From: HOS Date: Fri, 18 Oct 2024 10:14:49 +0200 Subject: [PATCH 1/2] FixLabels --- chapters/dae.tex | 2 +- chapters/derivationofstream.tex | 6 +++--- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/chapters/dae.tex b/chapters/dae.tex index 6f535ed94..f435c3755 100644 --- a/chapters/dae.tex +++ b/chapters/dae.tex @@ -16,6 +16,7 @@ \chapter{Modelica DAE Representation}\label{modelica-dae-representation} As a result of this transformation process, a set of equations is obtained consisting of differential, algebraic and discrete equations of the following form where ($v := \lbrack p; t; \dot{x}; x; y; z; m; \text{\lstinline!pre!}(z); \text{\lstinline!pre!}(m)\rbrack$): \begin{subequations} +\label{eq:hydrid-dae} \begin{equation}\label{eq:dae} 0 = f_{\mathrm{x}}(v, c) \end{equation} @@ -32,7 +33,6 @@ \chapter{Modelica DAE Representation}\label{modelica-dae-representation} \begin{equation}\label{eq:crossing} c := f_{\mathrm{c}}(\mathit{relation}(v)) \end{equation} -\label{eq:hydrid-dae} \end{subequations} and where \begin{itemize} diff --git a/chapters/derivationofstream.tex b/chapters/derivationofstream.tex index c92836b64..c6039390f 100644 --- a/chapters/derivationofstream.tex +++ b/chapters/derivationofstream.tex @@ -56,6 +56,8 @@ \section{Rationale for inStream}\label{rationale-for-the-formulation-of-the-inst The energy and mass balance equations for the connection set for 3 components are (see above): \begin{subequations} +\label{eq:D1b} +\label{eq:D1} \begin{equation} \begin{split} 0=&\tilde{m}_1\cdot @@ -78,14 +80,13 @@ \section{Rationale for inStream}\label{rationale-for-the-formulation-of-the-inst \end{equation} \begin{equation} 0=\tilde{m}_1+\tilde{m}_2+\tilde{m}_3 -\label{eq:D1b} \end{equation} -\label{eq:D1} \end{subequations} The balance equations are implemented using a $\operatorname{max}$ operator in place of the piecewise expressions, taking care of the different flow directions: \begin{subequations} +\label{eq:D2} \begin{equation} \begin{split} 0=&\operatorname{max}(\tilde{m}_1,0)h_{\mathrm{mix}}-\operatorname{max}(-\tilde{m}_1,0)h_{\mathrm{outflow},1}\\ @@ -103,7 +104,6 @@ \section{Rationale for inStream}\label{rationale-for-the-formulation-of-the-inst \end{split} \label{eq:D2b} \end{equation} -\label{eq:D2} \end{subequations} Equation \eqref{eq:D2a} is solved for $h_{\mathrm{mix}}$ From 71b3f4c63e627a7bad433643d06894499dec1123 Mon Sep 17 00:00:00 2001 From: HOS Date: Wed, 23 Oct 2024 15:46:25 +0200 Subject: [PATCH 2/2] DontMoveThat --- chapters/derivationofstream.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/chapters/derivationofstream.tex b/chapters/derivationofstream.tex index c6039390f..1184b47cc 100644 --- a/chapters/derivationofstream.tex +++ b/chapters/derivationofstream.tex @@ -56,7 +56,6 @@ \section{Rationale for inStream}\label{rationale-for-the-formulation-of-the-inst The energy and mass balance equations for the connection set for 3 components are (see above): \begin{subequations} -\label{eq:D1b} \label{eq:D1} \begin{equation} \begin{split} @@ -80,6 +79,7 @@ \section{Rationale for inStream}\label{rationale-for-the-formulation-of-the-inst \end{equation} \begin{equation} 0=\tilde{m}_1+\tilde{m}_2+\tilde{m}_3 +\label{eq:D1b} \end{equation} \end{subequations}