forked from psrth/Algo_Ds_Notes
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Heap_Sort.js
259 lines (238 loc) · 5.29 KB
/
Heap_Sort.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
/**
* Returns half the provided number
*
* @function parent
* @param {number} number - Number to be halved
* @return {number}
*
* Examples:
* parent(10)
* => 5
*/
function parent(number) {
return Math.floor(number/2);
}
/**
* Returns index corresponding to the left in a Heap
*
* @function left
* @param {number} number - Number whose left is to be calculated
* @return {number}
*
* Examples:
* left(10)
* => 20
*/
function left(number) {
return 2 * number;
}
/**
* Returns index corresponding to the right in a Heap
*
* @function parent
* @param {number} number - Number whose right is to be calculated
* @return {number}
*
* Examples:
* right(10)
* => 21
*/
function right(number) {
return (2 * number) + 1;
}
/**
* Returns half the provided number
*
* @function half
* @param {number} number - Number to be halved
* @return {number}
*
* Examples:
* half(10)
* => 5
*/
function half(number) {
return parent(number);
}
/**
* Returns half the provided number
*
* @extends Number
* @function parent
* @return {number}
*
* Examples:
* Number(10).parent();
* => 5
*/
Number.prototype.parent = function() {
return Math.floor(Number(this)/2);
}
/**
* Returns index corresponding to the left in a Heap
*
* @extends Number
* @function left
* @return {number}
*
* Examples:
* Number(10).left();
* => 20
*/
Number.prototype.left = function() {
return 2 * Number(this);
}
/**
* Returns index corresponding to the right in a Heap
*
* @extends Number
* @function right
* @return {number}
*
* Examples:
* Number(10).right();
* => 21
*/
Number.prototype.right = function() {
return (2 * Number(this)) + 1;
}
/**
* Returns half the provided number
*
* @extends Number
* @function parent
* @return {number}
*
* Examples:
* Number(10).half();
* => 5
*/
Number.prototype.half = function() {
return Number(this).parent();
}
/**
* Add a property to the Array object to track the heapSize of heap structure
*
* @extends Array
* @property heapSize
* @return undefined
*
* Examples:
* var arr = [];
* arr.heapSize = 10;
* => 10
*/
Array.prototype.heapSize = 0;
/**
* Returns an array with elements populated between the specified range(INCLUSIVE)
* in a REVERSE Order
*
* @extends Array
* @function reverseRangeArray
* @param {number} startIndex - Start element of the array to be built
* @param {number} endIndex - End element of the array to be built
* @return {array}
*
* Examples:
* (new Array()).reverseRangeArray(0, 5);
* ([]).reverseRangeArray(0, 5);
* => [5, 4, 3, 2, 1, 0]
*/
Array.prototype.reverseRangeArray = function(startIndex, endIndex) {
var arr = []
for(var i=endIndex; i>=startIndex; i--) {
arr.push(i);
}
return arr;
}
/**
* Ensures the max-heap property is being maintained from the index provided
* Recursive, Max-Heap property A[parent] >= A[left] as well as A[right]
*
* @function maxHeapify
* @param {array} arr - Input array
* @param {number} i - Index at which the Max-Heap property is to be applied
* @return undefined
*
* Examples:
* var arr = [5, 3, 8, 7, 9, 6, 2, 4, 1];
* maxHeapify(arr, 5)
*/
function maxHeapify(arr, i) {
arr.heapSize = arr.heapSize || arr.length;
var l = Number(i).left(), r = Number(i).right();
var largest = (l <= arr.heapSize-1 && arr[l] > arr[i]) ? l : i;
if (r <= arr.heapSize-1 && arr[r] > arr[largest]) {
largest = r;
}
if(largest !== i) {
[arr[i], arr[largest]] = [arr[largest], arr[i]];
maxHeapify(arr, largest);
}
}
/**
* Re-order the input array to adhere to the Max-Heap property at all indices
*
* @function buildMaxHeap
* @param {array} arr - Input array
* @return undefined
*
* Examples:
* var arr = [5, 3, 8, 7, 9, 6, 2, 4, 1];
* buildMaxHeap(arr);
*/
function buildMaxHeap(arr) {
arr.heapSize = arr.length;
(new Array()).reverseRangeArray(0, Number(arr.length).half()).forEach(function(i) {
maxHeapify(arr, i);
});
}
/**
* Sorts the array by adhering to the Max-Heap property and simulataneously
* decreasing the heap size
*
* @function heapSort
* @param {array} arr - Input array
* @return {array}
*
* Examples:
* var arr = [5, 3, 8, 7, 9, 6, 2, 4, 1];
* heapSort(arr);
* => [1, 2, 3, 4, 5, 6, 7, 8, 9]
*/
function heapSort(arr) {
buildMaxHeap(arr);
(new Array()).reverseRangeArray(1, arr.length-1).forEach(function(i) {
[arr[0], arr[i]] = [arr[i], arr[0]];
arr.heapSize -= 1;
maxHeapify(arr, 0);
});
return arr;
}
function unitTestHeap() {
test("Max Heapify", maxHeapifyTest());
test("Build Max Heap", buildMaxHeapTest());
test("Heap Sort", heapSortTest())
}
function test(functionName, functionTest) {
if(functionTest) {
console.log(functionName + " OK");
} else {
console.log(functionName + " FAIL");
}
}
function maxHeapifyTest() {
var arr = [5, 3, 8, 7, 9, 6, 2, 4, 1];
maxHeapify(arr, 2);
return JSON.stringify(arr) === JSON.stringify([5, 3, 9, 7, 8, 6, 2, 4, 1]);
}
function buildMaxHeapTest() {
var arr = [5, 3, 8, 7, 9, 6, 2, 4, 1];
buildMaxHeap(arr);
return JSON.stringify(arr) === JSON.stringify([9, 8, 6, 7, 3, 5, 2, 4, 1]);
}
function heapSortTest() {
var arr = [5, 3, 8, 7, 9, 6, 2, 4, 1]
return JSON.stringify(heapSort(arr)) === JSON.stringify([1, 2, 3, 4, 5, 6, 7, 8, 9]);
}
unitTestHeap();