-
Notifications
You must be signed in to change notification settings - Fork 2
/
publications.html
686 lines (566 loc) · 55.6 KB
/
publications.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
<!DOCTYPE html>
<html lang="en">
<head>
<!-- Title -->
<title>StellarDNN publications | Publication list and links</title>
<!-- Required Meta Tags Always Come First -->
<meta charset="utf-8">
<meta content="width=device-width, initial-scale=1, shrink-to-fit=no" name="viewport">
<!-- Favicon -->
<link href="./favicon.ico" rel="shortcut icon">
<!-- Font -->
<link href="https://fonts.googleapis.com/css2?family=Open+Sans:wght@400;600&display=swap" rel="stylesheet">
<!-- CSS Implementing Plugins -->
<link href="assets/front_v3_3/vendor/fontawesome/css/all.min.css" rel="stylesheet">
<link href="assets/front_v3_3/vendor/hs-mega-menu/dist/hs-mega-menu.min.css" rel="stylesheet">
<!-- CSS Front Template -->
<link href="assets/front_v3_3/css/theme.min.css" rel="stylesheet">
</head>
<body>
<!-- ========== HEADER ========== -->
<header-component></header-component>
<!-- ========== END HEADER ========== -->
<!-- ========== MAIN ========== -->
<main id="content" role="main">
<!-- Hero Section -->
<div class="container space-top-3 space-top-lg-4 space-bottom-2">
<div class="w-lg-80 text-center mx-lg-auto">
<div class="mb-5 mb-md-11">
<h1 class="display-4">Publications</h1>
A complete list of my publications can be obtained from my <a href="https://scholar.google.com/citations?user=hlFnwxwAAAAJ&hl=en">google scholar profile</a>, or
<a href="https://ui.adsabs.harvard.edu/search/q=(%20author%3A%22protopapas%2C%20p%22%20AND%20year%3A1991-)&sort=date%20desc%2C%20bibcode%20desc&p_=0"> NASA/ADS</a>
</div>
</div>
<div class="cbp-caption-defaultWrap text-center">
<!--img alt="Image Description" class="rounded-lg" src="assets/general/img/publications/publications.jpg" width="268" height="187"-->
<!-- /assets/front_v3_3/img/900x900/img7.jpg -->
</div>
</div>
<!-- End Hero Section -->
<div class="container space-bottom-3">
<div class="row">
<div class="col-sm">
<ul class="list-pointer list-pointer-sm list-pointer-primary">
<li>Bea, Y., Jiménez, R., Mateos, D., Liu, S., Protopapas, P., Tarancón-Álvarez, P., Tejerina-Pérez, P.
"Gravitational duals from equations of state." Journal of High Energy Physics, 2024(7), 87 (2024).</li>
<li>John Carter, Spiros Mancoridis, Pavlos Protopapas, Erick Galinkin.
"IoT Malware Data Augmentation using a Generative Adversarial Network." HICSS 2024: 7572-7581 (2024).</li>
<li>John Carter, Spiros Mancoridis, Pavlos Protopapas, Erick Galinkin.
"Behavioral Malware Detection using a Language Model Classifier Trained on sys2vec Embeddings."
HICSS 2024: 7582-7591 (2024).</li>
<li>A.T. Chantada, S.J. Landau, P. Protopapas, C.G. Scóccola, C. Garraffo.
"Faster Bayesian inference with neural network bundles and new results for ΛCDM models."
Physical Review D 109 (12), 123514 (2024).</li>
<li>V.S. Pérez Díaz, J. Ingram, V. Kashyap, J. Martinez Galarza, P. Protopapas.
"Enhancing Chandra-Gaia Crossmatching with Machine Learning."
AAS/High Energy Astrophysics Division 21, 105.02 (2024).</li>
<li>A. Mohan, P. Protopapas, K. Kunnumkai, C. Garraffo, L. Blackburn, et al.
"Generating images of the M87* black hole using GANs." Monthly Notices of the Royal Astronomical Society 527 (4),
10965-10974 (2024).</li>
<li>M. Cresitello-Dittmar, J. McDowell, D. Tody, T. Budavari, M. Dolensky, et al.
"IVOA Spectrum Data Model Version 1.2." IVOA Recommendation 15 December 2023.</li>
<li>A.T. Chantada, S.J. Landau, P. Protopapas, C.G. Scóccola, C. Garraffo.
"NN bundle method applied to cosmology: an improvement in computational times."
arXiv preprint arXiv:2311.15955 (2023).</li>
<li>W. Lei, P. Protopapas, J. Parikh. "One-Shot Transfer Learning for Nonlinear ODEs."
arXiv preprint arXiv:2311.14931 (2023).</li>
<li>D. Moreno-Cartagena, G. Cabrera-Vives, P. Protopapas, C. Donoso-Oliva, et al.
"Positional Encodings for Light Curve Transformers: Playing with Positions and Attention."
arXiv preprint arXiv:2308.06404 (2023).</li>
<li>K. Ly, J. Kurlander, M. Holman, M. Payne, A. Heinze, P. Bernardinelli, et al. "2010 RJ226." Minor Planet Electronic Circulars 2023.</li>
<li>J. Carter, S. Mancoridis, P. Protopapas. "Optimal data sample length for system call traces for malware detection in an iot ecosystem." 2023 3rd International Conference on Electrical, Computer, Communications and Electronics Engineering.</li>
<li>S. Liu, X. Huang, P. Protopapas. "Residual-based error bound for physics-informed neural networks." Uncertainty in Artificial Intelligence, 1284-1293 (2023).</li>
<li>A.T. Chantada, S.J. Landau, P. Protopapas, C.G. Scóccola, C. Garraffo. "Cosmology-informed neural networks to solve the background dynamics of the Universe." Physical Review D 107 (6), 063523 (2023).</li>
<li>M. Mattheakis, H. Joy, P. Protopapas. "Reservoir Computing for Solving Ordinary Differential Equations." International Journal on Artificial Intelligence Tools 32 (01), 2350030 (2023).</li>
<li>J. Astudillo, P. Protopapas, K. Pichara, I. Becker. "A Reinforcement Learning–Based Follow-up Framework." The Astronomical Journal 165 (3), 118 (2023).</li>
<li>C. Donoso-Oliva, I. Becker, P. Protopapas, G. Cabrera-Vives, M. Vishnu, et al. "ASTROMER-A transformer-based embedding for the representation of light curves." Astronomy & Astrophysics 670, A54 (2023).</li>
<li>T. Allen, F. Grezes, G. Shapurian, S. Blanco-Cuaresma, C. Grant, et al. "ADS Machine Learning and Deep Learning Efforts." American Astronomical Society Meeting Abstracts 55 (2), 177.37 (2023).</li>
<li>T.A.E. Ferreira, M. Mattheakis, P. Protopapas. "A New Artificial Neuron Proposal with Trainable Simultaneous Local and Global Activation Function." arXiv:2101.06100 (2021).</li>
<li>D. Sondak, P. Protopapas. "Learning a Reduced Basis of Dynamical Systems using an Autoencoder." arXiv:2011.07346 (2020).</li>
<li>R. Fang, D. Sondak, P. Protopapas, S. Succi. "Neural network models for the anisotropic Reynolds stress tensor in turbulent channel flow." Journal of Turbulence 21(9-10), 525-543 (2020).</li>
<li>L. Zorich, K. Pichara, P. Protopapas. "Streaming classification of variable stars." Monthly Notices of the Royal Astronomical Society 492(2), 2897-2909 (2020).</li>
<li>C. Flamant, P. Protopapas, D. Sondak. "Solving Differential Equations Using Neural Network Solution Bundles." arXiv preprint arXiv:2006.14372 (2020).</li>
<li>F. Chen, D. Sondak, P. Protopapas, M. Mattheakis, S. Liu, D. Agarwal, M. Di Giovanni. "NeuroDiffEq: A Python package for solving differential equations with neural networks." Journal of Open Source Software 5(46), 1931 (2020).</li>
<li>N. Astorga, P. Huijse, P. Protopapas, P. Estévez. "Matching Priors and Conditionals for Clustering." European Conference on Computer Vision, 658-677 (2020).</li>
<li>W. Wu, P. Protopapas, Z. Yang, P. Michalatos. "Gender classification and bias mitigation in facial images." 12th ACM Conference on Web Science, 106-114 (2020).</li>
<li>H. Jin, M. Mattheakis, P. Protopapas. "Unsupervised Neural Networks for Quantum Eigenvalue Problems." arXiv:2010.05075 (2020).</li>
<li>M. Mattheakis, D. Sondak, A.S. Dogra, P. Protopapas. "Hamiltonian Neural Networks for solving differential equations." arXiv:2001.11107 (2020).</li>
<li>A. Paticchio, T. Scarlatti, M. Mattheakis, P. Protopapas, M. Brambilla. "Semi-supervised Neural Networks solve an inverse problem for modeling Covid-19 spread." arXiv e-prints: 2020arXiv201005074P (2020).</li>
<li>D. Randle, P. Protopapas, D. Sondak. "Unsupervised Learning of Solutions to Differential Equations with Generative Adversarial Networks." arXiv preprint arXiv:2007.11133 (2020).</li>
<li>R. Carrasco-Davis, G. Cabrera-Vives, F. Förster, P.A. Estevez, P. Huijse, P. Protopapas, I. Reyes, J. Martínez-Palomera, C. Donoso. "Deep learning for image sequence classification of astronomical events." Publications of the Astronomical Society of the Pacific 131(1004), 108006 (2019).</li>
<li>M. Mattheakis, P. Protopapas, D. Sondak, M. Di Giovanni, E. Kaxiras. "Physical symmetries embedded in neural networks." arXiv preprint arXiv:1904.08991 (2019).</li>
<li>M. Pérez-Carrasco, G. Cabrera-Vives, M. Martinez-Marin, P. Cerulo, R. Demarco, P. Protopapas, J. Godoy. "Multiband galaxy morphologies for CLASH: a convolutional neural network transferred from CANDELS." Publications of the Astronomical Society of the Pacific 131(1004), 108002 (2019).</li>
<li>C. Pieringer, K. Pichara, M. Catelán, P. Protopapas. "An Algorithm for the Visualization of Relevant Patterns in Astronomical Light Curves." Monthly Notices of the Royal Astronomical Society 484(3), 3071-3077 (2019).</li>
<li>J. Astudillo, P. Protopapas, K. Pichara, P. Huijse. "An Information Theory Approach on Deciding Spectroscopic Follow-ups." The Astronomical Journal 159(1), 16 (2019).</li>
<li>A. Bianchi, M.R. Vendra, P. Protopapas, M. Brambilla. "Improving image classification robustness through selective CNN-filters fine-tuning." arXiv preprint arXiv:1904.03949 (2019).</li>
<li>B. Saldias-Fuentes, P. Protopapas. "A Full Probabilistic Model for Yes/No Type Crowdsourcing in Multi-Class Classification." Proceedings of the 2019 SIAM International Conference on Data Mining, 756-764 (2019).</li>
<li>M.J. Holman, M.J. Payne, W. Fraser, P. Lacerda, M.T. Bannister, M. Lackner, Y.T. Chen, H.W. Lin, K.W. Smith, R. Kokotanekova, D. Young. "A dwarf planet class object in the 21:5 resonance with Neptune." The Astrophysical Journal Letters 855(1), L6 (2018).</li>
<li>G. Ramponi, P. Protopapas, M. Brambilla, R. Janssen. "T-cgan: Conditional generative adversarial network for data augmentation in noisy time series with irregular sampling." arXiv preprint arXiv:1811.08295 (2018).</li>
<li>J. Martínez-Palomera, F. Förster, P. Protopapas, J.C. Maureira, P. Lira, G. Cabrera-Vives, P. Huijse, L. Galbany, T. De Jaeger, S. González-Gaitán, G. Medina. "The High Cadence Transit Survey (HiTS): Compilation and Characterization of Light-curve Catalogs." The Astronomical Journal 156(5), 186 (2018).</li>
<li>P. Huijse, P.A. Estévez, F. Förster, S.F. Daniel, A.J. Connolly, P. Protopapas, R. Carrasco, J.C. Príncipe. "Robust Period Estimation Using Mutual Information for Multiband Light Curves in the Synoptic Survey Era." The Astrophysical Journal Supplement Series 236(1), 12 (2018).</li>
<li>M. Belhaj, P. Protopapas, W. Pan. "Deep variational transfer: Transfer learning through semi-supervised deep generative models." arXiv preprint arXiv:1812.03123 (2018).</li>
<li>J.R. Maat, N. Gianniotis, P. Protopapas. "Efficient optimization of echo state networks for time series datasets." 2018 International Joint Conference on Neural Networks (IJCNN), 1-7 (2018).</li>
<li>N. Hoernle, K. Gal, B. Grosz, P. Protopapas, A. Rubin. "Modeling the Effects of Students' Interactions with Immersive Simulations Using Markov Switching Systems." International Educational Data Mining Society (2018).</li>
<li>J.R. Martínez-Galarza, P. Protopapas, H.A. Smith, E.F. Morales. "Unraveling the Spectral Energy Distributions of Clustered YSOs." The Astrophysical Journal 864(1), 71 (2018).</li>
<li>R.C. Davis, G. Cabrera-Vives, F. Förster, P.A. Estévez, P. Huijse, P. Protopapas, I. Reyes, J. Martínez, C. Donoso. "Deep Learning for Image Sequence Classification of Astronomical Events." arXiv preprint arXiv:1807.03869 (2018).</li>
<li>Y.F. Jiang, P.J. Green, J.E. Greene, E. Morganson, Y. Shen, A. Pancoast, C.L. MacLeod, S.F. Anderson, W.N. Brandt, C.J. Grier, H.W. Rix. "Detection of time lags between quasar continuum emission bands based on Pan-STARRS light curves." The Astrophysical Journal 836(2), 186 (2017).</li>
<li>P. Benavente, P. Protopapas, K. Pichara. "Automatic survey-invariant classification of variable stars." The Astrophysical Journal 845(2), 147 (2017).</li>
<li>Yago Bea, Raúl Jiménez, David Mateos, Shuheng Liu, Pavlos Protopapas, Pedro Tarancón-Álvarez, Pablo Tejerina-Pérez. "Gravitational Duals from Equations of State." arXiv preprint arXiv:2403.14763 (2024).</li>
<li>John Carter, Spiros Mancoridis, Pavlos Protopapas, Erick Galinkin. "IoT Malware Data Augmentation using a Generative Adversarial Network." HICSS 2024: 7572-7581.</li>
<li>John Carter, Spiros Mancoridis, Pavlos Protopapas, Erick Galinkin. "Behavioral Malware Detection using a Language Model Classifier Trained on sys2vec Embeddings." HICSS 2024: 7582-7591.</li>
<li>Marios Mattheakis, Hayden Joy, Pavlos Protopapas. "A New Artificial Neuron Proposal with Trainable Simultaneous Local and Global Activation Function." CoRR abs/2101.06100 (2021) (Note: This appears to be a journal publication in 2023 of a 2021 preprint).</li>
<li>R Pellegrin, B Bullwinkel, M Mattheakis, P Protopapas. "Transfer Learning with Physics-Informed Neural Networks for Efficient Simulation of Branched Flows" (2023)</li>
<li>O Graf, P Flores, P Protopapas, K Pichara. "Error-Aware B-PINNs: Improving Uncertainty Quantification in Bayesian Physics-Informed Neural Networks" (2023)</li>
<li>Blake Bullwinkel, Dylan Randle, Pavlos Protopapas, David Sondak. "Deqgan: Learning the loss function for pinns with generative adversarial networks" (2023)</li>
<li>S Liu, X Huang, P Protopapas. "Evaluating Error Bound for Physics-Informed Neural Networks on Linear Dynamical Systems" (2023)</li>
<li>Hayden Joy, Marios Mattheakis, Pavlos Protopapas. "RcTorch: a PyTorch Reservoir Computing Package with Automated Hyper-Parameter Optimization" (2023)</li>
<li>F Förster, G Cabrera-Vives, E Castillo-Navarrete, PA Estévez, ... P Protopapas, et al. "The automatic learning for the rapid classification of events (ALeRCE) alert broker" (2021)</li>
<li>M Mattheakis, D Sondak, AS Dogra, P Protopapas. "Hamiltonian neural networks for solving equations of motion" (2022)</li>
<li>Pellegrin, R., Bullwinkel, B., Mattheakis, M., Protopapas, P., "Transfer Learning with Physics-Informed Neural Networks for Efficient Simulation of Branched Flows" (2023)</li>
<li>Graf, O., Flores, P., Protopapas, P., Pichara, K., "Error-Aware B-PINNs: Improving Uncertainty Quantification in Bayesian Physics-Informed Neural Networks" (2023)</li>
<li>Bullwinkel, B., Randle, D., Protopapas, P., Sondak, D., "Deqgan: Learning the loss function for pinns with generative adversarial networks" (2023)</li>
<li>Liu, S., Huang, X., Protopapas, P., "Evaluating Error Bound for Physics-Informed Neural Networks on Linear Dynamical Systems" (2023)</li>
<li>Joy, H., Mattheakis, M., Protopapas, P., "RcTorch: a PyTorch Reservoir Computing Package with Automated Hyper-Parameter Optimization" (2023)</li>
<li>Förster, F., Cabrera-Vives, G., Castillo-Navarrete, E., Estévez, P.A., ... Protopapas, P., et al., "The automatic learning for the rapid classification of events (ALeRCE) alert broker" (2021)</li>
<li>Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P., "Hamiltonian neural networks for solving equations of motion" (2022)</li>
<li>
Ferreira, T. A. E., Mattheakis, M., and Protopapas, P., <em>A New Artificial
Neuron Proposal with Trainable Simultaneous Local and Global Activation Function</em>, 2021, <i>arXiv:2101.06100</i> [<a href="Pub/Tiago2021.pdf">pdf</a>]
</li>
<li>
D, Sondak, P. Protopapas, <em>Learning a Reduced Basis of Dynamical Systems using an Autoencoder
</em>, 2020, arXiv:2011.07346 [<a href="Pub/Sondak2020.pdf" target="_blank">pdf</a>]
</li>
<li>
Fang, R., Sondak, D., Protopapas, P. and Succi, S.,
<em>Neural network models for the anisotropic Reynolds stress tensor in turbulent channel flow. </em>, 2020, Journal of Turbulence, 21(9-10), pp.525-543 [<a href="Pub/Rui2020.pdf">pdf</a>]
</li>
<li>
Zorich, L., Pichara, K. and Protopapas, P.,
<em>Streaming classification of variable stars. Monthly Notices of the Royal Astronomical Society </em>, 2020, 492(2), pp.2897-2909 [<a href="Pub/Zorich2020.pdf">pdf</a>]
</li>
<li>
Flamant, C., Protopapas, P. and Sondak, D.,
<em>Solving Differential Equations Using Neural Network Solution Bundles</em>, 2020, arXiv preprint arXiv:2006.14372, [
<a href="Pub/Cedric2020.pdf">pdf</a>]
</li>
<li>
Chen, F., Sondak, D., Protopapas, P., Mattheakis, M., Liu, S., Agarwal, D. and Di Giovanni, M.,
<em> NeuroDiffEq: A Python package for solving differential equations with neural networks </em>, 2020, Journal of Open Source Software, 5(46), p.1931 [<a href="Pub/Chen2020.pdf">pdf</a>]
</li>
<li>
Astorga, N., Huijse, P., Protopapas, P. and Estévez, P.,
<em>Matching Priors and Conditionals for Clustering</em>, 2020, August, MPCC, In European Conference on Computer Vision (pp. 658-677). Springer, Cham [<a href="Pub/Nicolas2020.pdf">pdf</a>]
</li>
<li>
Wu, W., Protopapas, P., Yang, Z. and Michalatos, P.,
<em> Gender classification and bias mitigation in facial images </em>, 2020. In 12th ACM Conference on Web Science (pp. 106-114) [<a href="Pub/Kali2020.pdf">pdf</a>]
</li>
<li>
H. Jin, M. Mattheakis, P. Protopapas, <em> Unsupervised Neural Networks for Quantum Eigenvalue Problems</em>, 2020, arXiv:2010.05075 [
<a href="Pub/Henry2020.pdf">pdf</a>]</li>
<li>
Mattheakis, M., Sondak, D., Dogra, A.S. and Protopapas, P.,
<em>Hamiltonian Neural Networks for solving differential equations </em>, 2020., arXiv:2001.11107 [<a href="Pub/MariosArxiv2020.pdf">pdf</a>]
</li>
<li>
Paticchio, A., Scarlatti, T., Mattheakis, M., Protopapas, P., and Brambilla, M.,
<em>Semi-supervised Neural Networks solve an inverse problem for modeling Covid-19 spread</em>, <i>arXiv e-prints: 2020arXiv201005074P </i>, 2020, [<a href='Pub/Ale2020.pdf'>pdf</a> </li>
</li>
<li>
Randle, D., Protopapas, P. and Sondak, D., <em>Unsupervised Learning of Solutions to Differential Equations with
Generative Adversarial Networks</em>, 2020, arXiv preprint arXiv:2007.11133 [<a href="Pub/Dylan2020.pdf">pdf</a>]
</li>
<li>
Carrasco-Davis, R., Cabrera-Vives, G., Förster, F., Estevez, P.A., Huijse, P., Protopapas, P., Reyes, I., Martínez-Palomera, J. and Donoso, C.,
<em> Deep learning for image sequence classification of astronomical events </em>, 2019, Publications of the Astronomical Society of the Pacific, 131(1004), p.108006 [<a href="Pub/Carrasco2019.pdf">pdf</a>]
</li>
<li>
Mattheakis, M., Protopapas, P., Sondak, D., Di Giovanni, M. and Kaxiras, E.,
<em> Physical symmetries embedded in neural networks </em>, 2019, arXiv preprint arXiv:1904.08991 [<a href="Pub/Marios2019.pdf">pdf</a>]
</li>
<li>
Pérez-Carrasco, M., Cabrera-Vives, G., Martinez-Marin, M., Cerulo, P., Demarco, R., Protopapas, P. and Godoy, J.,
<em> Multiband galaxy morphologies for CLASH: a convolutional neural network transferred from CANDELS, </em>2019, Publications of the Astronomical Society of the Pacific, 131(1004), p.108002 [<a href="Pub/Manolo2019.pdf">pdf</a>]
</li>
<li>
Pieringer, C., Pichara, K., Catelán, M. and Protopapas, P.,
<em>An Algorithm for the Visualization of Relevant Patterns in Astronomical Light Curves</em>, 2019, Monthly Notices of the Royal Astronomical Society, 484(3), pp.3071-3077 [<a href="Pub/Cristian2019.pdf">pdf</a>]
</li>
<li>
Astudillo, J., Protopapas, P., Pichara, K. and Huijse, P., <em>An Information Theory Approach on Deciding Spectroscopic Follow-ups</em>, 2019, The Astronomical Journal, 159(1), p.16 [<a href="Pub/Astudillo2019.pdf">pdf</a>]
</li>
<li>
Bianchi, A., Vendra, M.R., Protopapas, P. and Brambilla, M.,
<em>Improving image classification robustness through selective CNN-filters fine-tuning </em>, 2019, arXiv preprint arXiv:1904.03949. [
<a href="Pub/Bianchi2019.pdf">pdf</a>]
</li>
<li>
Saldias-Fuentes, B. and Protopapas, P.,
<em>A Full Probabilistic Model for Yes/No Type Crowdsourcing in Multi-Class Classification </em>, 2019, In Proceedings of the 2019 SIAM International Conference on Data Mining (pp. 756-764). Society for Industrial and Applied
Mathematics. [
<a href="Pub/Belen2019.pdf">pdf</a>]
</li>
<li>
Holman, M.J., Payne, M.J., Fraser, W., Lacerda, P., Bannister, M.T., Lackner, M., Chen, Y.T., Lin, H.W., Smith, K.W., Kokotanekova, R. and Young, D.,
<em> A dwarf planet class object in the 21: 5 resonance with Neptune</em>, 2018, The Astrophysical Journal Letters, 855(1), p.L6 [
<a href="Pub/Holman2018.pdf">pdf</a>]
</li>
<li>
Ramponi, G., Protopapas, P., Brambilla, M. and Janssen, R.,
<em> T-cgan: Conditional generative adversarial network for data augmentation in noisy time series with irregular sampling </em>, 2018, arXiv preprint arXiv:1811.08295 [
<a href="Pub/Georgia2018.pdf">pdf</a>]
</li>
<li>
Martínez-Palomera, J., Förster, F., Protopapas, P., Maureira, J.C., Lira, P., Cabrera-Vives, G., Huijse, P., Galbany, L., De Jaeger, T., González-Gaitán, S. and Medina, G.,
<em> The High Cadence Transit Survey (HiTS): Compilation and Characterization of Light-curve Catalogs </em>, 2018, The Astronomical Journal, 156(5), p.186. [
<a href="Pub/Jorge2018.pdf">pdf</a>]
</li>
<li>
Huijse, P., Estévez, P.A., Förster, F., Daniel, S.F., Connolly, A.J., Protopapas, P., Carrasco, R. and Príncipe, J.C.,
<em> Robust Period Estimation Using Mutual Information for Multiband Light Curves in the Synoptic Survey Era.
The Astrophysical Journal Supplement Series</em>, 2018, 236(1), p.12 [
<a href="Pub/Pablo2018.pdf">pdf</a>]
</li>
<li>
Belhaj, M., Protopapas, P. and Pan, W.,
<em>Deep variational transfer: Transfer learning through semi-supervised deep generative models</em>, 2018, arXiv preprint arXiv:1812.03123 [
<a href="Pub/Marouan2018.pdf">pdf</a>]
</li>
<li>
Maat, J.R., Gianniotis, N. and Protopapas, P.,
<em> July. Efficient optimization of echo state networks for time series datasets</em>, 2018, In 2018 International Joint Conference on Neural Networks (IJCNN) (pp. 1-7). IEEE [
<a href="Pub/Reinier2018.pdf">pdf</a>]
</li>
<li>
Hoernle, N., Gal, K., Grosz, B., Protopapas, P. and Rubin, A.,
<em> Modeling the Effects of Students' Interactions with Immersive Simulations Using Markov Switching Systems</em>, 2018, International Educational Data Mining Society [
<a href="Pub/Nick2018.pdf">pdf</a>]
</li>
<li>
Martínez-Galarza, J.R., Protopapas, P., Smith, H.A. and Morales, E.F.,
<em>Unraveling the Spectral Energy Distributions of Clustered YSOs</em>, 2018, The Astrophysical Journal, 864(1), p.71. [
<a href="Pub/Rafael2018.pdf">pdf</a>]
</li>
<li>
Davis, R.C., Cabrera-Vives, G., Förster, F., Estévez, P.A., Huijse, P., Protopapas, P., Reyes, I., Martínez, J. and Donoso, C.,
<em>Deep Learning for Image Sequence Classification of Astronomical Events</em>, 2018, arXiv preprint arXiv:1807.03869 [
<a href="Pub/Rodrigo2018.pdf">pdf</a>]
</li>
<li>
Jiang, Y.F., Green, P.J., Greene, J.E., Morganson, E., Shen, Y., Pancoast, A., MacLeod, C.L., Anderson, S.F., Brandt, W.N., Grier, C.J. and Rix, H.W., <em>Detection of time lags between quasar continuum emission bands based on Pan-STARRS light curves</em>,
2017, The Astrophysical Journal, 836(2), p.186 [<a href="Pub/Holman2017.pdf">pdf</a>]
</li>
<li>
Benavente, P., Protopapas, P. and Pichara, K.,
<em>Automatic survey-invariant classification of variable stars</em>, 2017, The Astrophysical Journal, 845(2), p.147 [
<a href="Pub/Patricio2017.pdf">pdf</a>]
</li>
<li>
Castro, N., Protopapas, P. and Pichara, K.,
<em>Uncertain classification of variable stars: handling observational GAPS and noise</em>, 2017, The Astronomical Journal, 155(1), p.16 [
<a href="Pub/Nicolas2017.pdf">pdf</a>]
</li>
<li>
Protopapas, P., <em>Recurrent Neural Network Applications for Astronomical Time Series</em>, 2017, In American Astronomical Society Meeting Abstracts# 230 (Vol. 230, pp. 104-03). [
<a href="Pub/Protopapas2017.pdf">pdf</a>]
</li>
<li>
Mackenzie, C., Pichara, K. and Protopapas, P.,
<em>Clustering-based feature learning on variable stars</em>, 2016, The Astrophysical Journal, 820(2), p.138 [
<a href="Pub/Cristobal2016.pdf">pdf</a>]
</li>
<li>
Pichara, K., Protopapas, P. and León, D.,
<em>Meta-classification for variable stars</em>, 2016, The Astrophysical Journal, 819(1), p.18 [
<a href="Pub/Karim2016.pdf">pdf</a>]
</li>
<li>
Narasimhan, H., Pan, W., Kar, P., Protopapas, P. and Ramaswamy, H.G.,
<em>December. Optimizing the multiclass F-measure via biconcave programming</em>, 2016, In 2016 IEEE 16th international conference on data mining (ICDM) (pp. 1101-1106). IEEE [
<a href="Pub/Hari2016.pdf">pdf</a>]
</li>
<li>
Nun, I., Protopapas, P., Sim, B. and Chen, W.,
<em>Ensemble learning method for outlier detection and its application to astronomical light curves</em> The Astronomical Journal, 152(3), p.71 [
<a href="Pub/Isadora2016.pdf">pdf</a>]
</li>
<li>
Kim, R., <em> Empirical Methods in Peer Prediction (Doctoral dissertation) </em> [
<a href="Pub/Kim2016.pdf">pdf</a>]
</li>
<li>
Xia, X., Protopapas, P. and Doshi-Velez, F.,
<em>Cost-Sensitive Batch Mode Active Learning: Designing Astronomical Observation by Optimizing Telescope Time and Telescope Choice</em> In Proceedings of the 2016 SIAM International Conference on Data Mining (pp. 477-485).
Society for Industrial and Applied Mathematics [
<a href="Pub/Xia2016.pdf">pdf</a>]
</li>
<li>
Nun, I., Protopapas, P., Sim, B., Zhu, M., Dave, R., Castro, N. and Pichara, K., <em>Fats: Feature analysis for time series</em>, 2105, arXiv preprint arXiv:1506.00010 [
<a href="Pub/Isadora2015.pdf">pdf</a>]
</li>
<li>
Protopapas, P., Huijse, P., Estevez, P.A., Zegers, P., Principe, J.C. and Marquette, J.B.,
<em>A novel, fully automated pipeline for period estimation in the eros 2 data set</em>, 2015, The Astrophysical Journal Supplement Series, 216(2), p.25 [
<a href="Pub/Pavlos2015.pdf">pdf</a>]
</li>
<li>
Yang, J.J., Wang, X., Protopapas, P. and Bornn, L.,
<em>Fast and optimal nonparametric sequential design for astronomical observations</em>, 2015, arXiv preprint arXiv:1501.02467 [
<a href="Pub/Yang2015.pdf">pdf</a>]
</li>
<li>
Kim, D.W., Protopapas, P., Bailer-Jones, C.A., Byun, Y.I., Chang, S.W., Marquette, J.B. and Shin, M.S.,
<em>The EPOCH Project-I. Periodic variable stars in the EROS-2 LMC database</em>, 21014, Astronomy & Astrophysics, 566, p.A43 [
<a href="Pub/daewon2014.pdf">pdf</a>]
</li>
<li>
Huijse, P., Estevez, P.A., Protopapas, P., Principe, J.C. and Zegers, P.,
<em>Computational intelligence challenges and applications on large-scale astronomical time series databases</em>, 2014, IEEE Computational Intelligence Magazine, 9(3), pp.27-39 [
<a href="Pub/Pablo2014.pdf">pdf</a>]
</li>
<li>
Nun, I., Pichara, K., Protopapas, P. and Kim, D.W.,
<em>Supervised detection of anomalous light curves in massive astronomical catalogs</em>, 2014 The Astrophysical Journal, 793(1), p.23 [
<a href="Pub/Isadora2014.pdf">pdf</a>]
</li>
<li>
Verde, L., Protopapas, P. and Jimenez, R.,
<em>The expansion rate of the intermediate universe in light of Planck</em>, 2014, Physics of the Dark Universe, 5, pp.307-314 [
<a href="Pub/Licia2014.pdf">pdf</a>]
</li>
<li>
Verde, L., Protopapas, P. and Jimenez, R.,
<em>Planck and the local Universe: Quantifying the tension</em>, 2013, Physics of the Dark Universe, 2(3), pp.166-175 [
<a href="Pub/Licia2013.pdf">pdf</a>]
</li>
<li>
Pichara, K. and Protopapas, P.,
<em>Automatic classification of variable stars in catalogs with missing data</em>, 2103, The Astrophysical Journal, 777(2), p.83 [
<a href="Pub/Karim2013.pdf">pdf</a>]
</li>
<li>
Chang, S.W., Protopapas, P., Kim, D.W. and Byun, Y.I.,
<em>Statistical properties of Galactic δ Scuti stars: revisited</em>, 2013, The Astronomical Journal, 145(5), p.132 [
<a href="Pub/Daewon2013.pdf">pdf</a>]
</li>
<li>
Huijse, P., Estevez, P.A., Protopapas, P., Zegers, P. and Principe, J.C.,
<em>An information theoretic algorithm for finding periodicities in stellar light curves</em>, 2012, IEEE Transactions on Signal Processing, 60(10), pp.5135-5145 [
<a href="Pub/Pablo2012.pdf">pdf</a>]
</li>
<li>
Pichara, K., Protopapas, P., Kim, D.W., Marquette, J.B. and Tisserand, P.,
<em>An improved quasar detection method in EROS-2 and MACHO LMC data sets</em>, 2012, Monthly Notices of the Royal Astronomical Society, 427(2), pp.1284-1297 [
<a href="Pub/Karim2012.pdf">pdf</a>]
</li>
<li>
Wang, Y., Khardon, R. and Protopapas, P.,
<em>Nonparametric Bayesian estimation of periodic light curves</em> 2012, The Astrophysical Journal, 756(1), p.67 [
<a href="Pub/Roni2012.pdf">pdf</a>]
</li>
<li>
Kim, D.W., Protopapas, P., Trichas, M., Rowan-Robinson, M., Khardon, R., Alcock, C. and Byun, Y.I.,
<em>A Refined QSO Selection Method Using Diagnostics Tests: 663 QSO Candidates in the Large Magellanic Cloud</em> The Astrophysical Journal, 747(2), p.107 [
<a href="Pub/Daewon2012.pdf">pdf</a>]
</li>
<li>
Blocker, A.W. and Protopapas, P.,
<em>Semi-parametric robust event detection for massive time-domain databases</em>, 2012, In Statistical Challenges in Modern Astronomy V (pp. 177-187). Springer, New York, NY [
<a href="Pub/Alex2012.pdf">pdf</a>]
</li>
<li>
Wang, Y., Khardon, R. and Protopapas, P.,
<em>Infinite shift-invariant grouped multi-task learning for gaussian processes</em>, 2012, arXiv preprint arXiv:1203.0970 [
<a href="Pub/wang2012.pdf">pdf</a>]
</li>
<li>
Huijse, P., Estévez, P.A., Protopapas, P., Zegers, P. and Príncipe, J.C.,
<em>Computational Challenges in Processing Very Large Astronomical Survey Databases</em>, 2012, In 2012 9th Asia-Pacific Symposium on Information and Telecommunication Technologies (APSITT) (pp. 1-6). IEEE [
<a href="Pub/Pablo2012.pdf">pdf</a>]
</li>
<li>
Kim, D.W., Protopapas, P., Byun, Y.I., Alcock, C., Khardon, R. and Trichas, M.,
<em>Quasi-stellar object selection algorithm using time variability and machine learning: Selection of 1620 quasi-stellar object candidates from MACHO Large Magellanic Cloud database</em> ,2011, The Astrophysical Journal, 735(2),
p.68 [
<a href="Pub/Daewon2011.pdf">pdf</a>]
</li>
<li>
Huijse, P., Estévez, P.A., Zegers, P., Príncipe, J.C. and Protopapas, P.,
<em>Period estimation in astronomical time series using slotted correntropy</em>, 2011, IEEE Signal Processing Letters, 18(6), pp.371-374 [
<a href="Pub/Pablos2011.pdf">pdf</a>]
</li>
<li>
Wang, Y., Khardon, R. and Protopapas, P.,
<em> Nonparametric Bayesian estimation of periodic functions</em> 2011, arXiv preprint arXiv:1111.1315 [
<a href="Pub/Wang2011.pdf">pdf</a>]
</li>
<li>
Mishra, B.P., Principe, J.C., Estevez, P.A. and Protopapas, P.,
<em></Estimation of periodicity in non-uniformly sampled astronomical data using a 2D kernel in correntropy</em> 2011, In 2011 IEEE International Workshop on Machine Learning for Signal Processing (pp. 1-6). IEEE [
<a href="Pub/Mishra2011.pdf">pdf</a>]
</li>
<li>
Fuentes, C.I., Holman, M.J., Trilling, D.E. and Protopapas, P.,
<em>Trans-Neptunian objects with Hubble Space Telescope ACS/WFC</em> 2011, The Astrophysical Journal, 722(2), p.1290 [
<a href="Pub/Cesar2010.pdf">pdf</a>]
</li>
<li>
Wang, Y., Khardon, R. and Protopapas, P.,
<em>Shift-invariant grouped multi-task learning for Gaussian processes</em>, 2010, In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 418-434). Springer, Berlin, Heidelberg [
<a href="Pub/Wang2010.pdf">pdf</a>]
</li>
<li>
Estévez, P.A., Huijse, P., Zegers, P., Principe, J.C. and Protopapas, P.,
<em>Period detection in light curves from astronomical objects using correntropy</em>, 2010, In The 2010 International Joint Conference on Neural Networks (IJCNN) (pp. 1-7). IEEE [
<a href="Pub/Pablos2010.pdf">pdf</a>]
</li>
<li>
U. Rebbapragada, P. Protopapas, C. Brodley, C. Alcock, <em>Finding Anomalies in Periodic Time Series</em>, Machine Learning, p. 281, vol. 74, (<span class="style5">2009</span>) [<a href="Pub/Umaa2009.pdf">pdf</a>]</li>
<li>
S. Pember, C. Brodley, P. Protopapas, and A. Kilmer, <em>Similarity Retrieval in Large Datasets using Rank Revealing QR</em>, ICDM, Under review at IEEE PAMI, (<span class="style5">2009</span>).<br />
</li>
<li>
Dan Preston, Pavlos Protopapas and Carla Brodley<em>, Event Detection in Time Series</em>, Proceedings of the Ninth SIAM International Conference on Data Mining, p. 61-72, (<span class="style5">2009</span>) [<a href="Pub/prestondSIAM.pdf"
target="_blank">pdf</a>]<br />
</li>
<li>
Dan Preston, Pavlos Protopapas and Carla Brodley, <em>Discovering Arbitrary Event Types in Time Series,</em> SIAM Best of 09 SDM, (<span class="style5">2009</span>)<br /></li>
<li>
Dae-Won Kim, Pavlos Protopapas, Charles Alcock, Yong-Ik Byun, Federica Bianco<em>, Detection of Flare Stars in TAOS 2-year Data</em>, The Astronomer's Telegram, vol. #2035, (<span class="style5">2009</span>) [<a href="http://www.astronomerstelegram.org/?read=2035"
target="_blank">html</a>] <br />
</li>
<li>
Gabriel Wachman, Roni Khardon, Pavlos Protopapas, Charles R. Alcock, <em>Kernels for Periodic Time Series Arising in Astronomy</em>, ECML PKDD, (<span class="style5">2009</span>) [<a href="Pub/Wachman2009.pdf" target="_blank">pdf</a>]<br
/>
</li>
<li>
Dae-Won Kim, Pavlos Protopapas, Yong-Ik Byun, Charles Alcock and the TAOS collaboration, <em>The TAOS Project Stellar Variability I. Detection of Low-Amplitude δ Scuti Stars and a Revised Catalog of All Known δ Scuti Stars,</em> submitted to Astronomical Journal, (<span class="style5">2009</span>) [<a href="Pub/DSC2009.pdf" target="_blank">pdf</a>]<br />
</li>
<li>
J.~H. Wang, P. Protopapas, W. –P. Chen, C. R. Alcock, W. S. Burgett, T. Dombeck, J. S. Morgan, P. A. Price, J. L. Tonry, <em>Searching for sub-kilometer TNOs using Pan-STARRS video mode lightcurves:</em><strong> </strong><em>Preliminary study and evaluation using engineering data, </em>submitted
to Astronomical Journal, (<span class="style5">2009</span>) [<a href="Pub/Wang2009.pdf" target="_blank">pdf</a>]<br />
</li>
<li>
A. W. Blocker, P. Protopapas, C. R. Alcock<em>, A Bayesian approach to the analysis of time symmetry in light curves: Reconsidering Scorpius X-1 occultations</em>, The Astronomical Journal, Volume 138, Issue 2, pp. 568-578,
(
<span class="style5">2009</span>) [<a href="Pub/Blocker2009.pdf" target="_blank">pdf</a>]<br />
</li>
<li>
F. Bianco, P. Protopapas, B. McLeod, C. R. Alcock, M. J. Holman, M. J. Lehner. <em>A Search for Occultations of Bright Stars by Small Kuiper Belt Objects using Megacam on the MMT, </em>The Astronomical Journal,
Volume 138, Issue 2, pp. 568-578, (<span class="style5">2009</span>) [<a href="Pub/Bianco2009.pdf" target="_blank">pdf</a>]<br />
</li>
<li>
D-W Kim, P. Protopapas, C. Alcock, B. Yong-Ik, F. Bianco, <em>De-Trending Time Series for Astronomical Variability Surveys</em>, Monthly Notices of the Royal Astronomical Society, Volume 397, Issue 2, pp. 558-568,<em> (2008)</em> [<a href="Pub/DaeWon-Detrend.pdf" target="_blank">pdf</a>]<br />
</li>
<li>
R. E. Schild, J. Lovegrove, P. Protopapas, <em>Reverberation in the UV-Optical Continuum Brightness Fluctuations of MACHO Quasar</em>, The Astronomical Journal, Volume 138, Issue 2, pp. 421-427, (<span class="style5">2009</span>)
[
<a href="Pub/Schild2009.pdf" target="_blank">pdf</a>]<br />
</li>
<li>
Zhan et al.<strong>, </strong><em>First Results from the Taiwanese-American Occultation Survey (TAOS)</em>, ApJL, 685, L157, (<span class="style5">2008</span>) [<a href="http://arxiv.org/pdf/0808.2051v1">pdf</a>]<br />
</li>
<li>
E. Morikawa, R. Dave, P. Protopapas, <em>A Novel GUI Based Interactive Work Flow Application for Exploratory and Batch Processing of Light Curves, </em>Astronomical Data Analysis Software and Systems XVII, 394, 357, (
<span class="style5">2008)</span> [<a href="Pub/Morikawa2007.pdf">pdf</a>]<br />
</li>
<li>
Lorenzo Faccioli, Charles Alcock, Kem Cook, Gabriel E. Prochter, Pavlos Protopapas, David Syphers, <em>Eclipsing Binary Stars in the Large and Small Magellanic Clouds from the MACHO Project: The Sample</em>, AJ, 134, 1963-1994,
<span class="style5">(2007) </span>[<a href="Pub/Faccioli2007.pdf">pdf</a>] <br />
</li>
<li>
Holman, Matthew J.; Protopapas, P.; Tholen, D. J., <em>Searching for Solar System Wide Binaries with Pan-STARRS-1</em>, AAS, 39, 52, <span class="style5">(2007)</span><br /></li>
<li>
Dave, R.; Protopapas, P.; Lehner, M., <em>Virtual Astronomical Pipelines</em>, Astronomical Data Analysis Software and Systems XVI ASP Conference Series, Vol. 376, proceedings of the conference held 15-18 October in Tucson,
Arizona, USA. Edited by Richard A. Shaw, Frank Hill and David J. Bell., p.253, <span class="style5">(2006)</span> [<a href="Pub/Dave2007.pdf">pdf</a>]<br />
</li>
<li>
J. M. Diego, M. Tegmark, P. Protopapas, H. B. Sadvik, <em>Combined reconstruction of weak and strong lensing data with WSLAP</em>, MNRAS, 375, 958-970, <span class="style5">(2007)</span> [<a href="Pub/Diego2007.pdf">pdf</a>]<br
/>
</li>
<li>
Eamonn Keogh, Li Wei, Xiaopeng Xi, Michail Vlachos, Sang-Hee Lee, Pavlos Protopapas. Supporting,<em> Exact Indexing of Shapes under Rotation Invariance with Arbitrary
Representations and Distance Measures, </em>VLDB: 882-893, (<span class="style5">2006)</span> [<a href="Pub/Eamonn2008.pdf" target="_blank">pdf</a>] <br /></li>
<li>
P. Protopapas, J. M. Giammarco, L. Faccioli, M. F. Struble, R. Dave , C. Alcock, <em>Finding outlier light-curves in catalogs of periodic variable stars</em>, MNRAS, 369, 677,
<span class="style5">(<em>2006)</em> </span>[<a href="Pub/Giammarco2006.pdf" target="_blank">pdf</a>]<br />
</li>
<li>
Pavlos Protopapas, Raul Jimenez , Charles Alcock , <em>Fast identification of transits from light-curves</em>, MNRAS, 362, 460, <span class="style5">(2005)</span> [
<a href="Pub/Jimenez2005.pdf" target="_blank">pdf</a>]<br />
</li>
<li>
J. M. Diego, H. B. Sadvik, P. Protopapas, M. Tegmark, N. Benitez, T. Broadhurst, <em>Non-parametric mass reconstruction of A1689 from strong lensing data with SLAP</em>, MNRAS, 362, 1247,
<span class="style5">(2005)</span> [<a href="Pub/Diego2005b.pdf" target="_blank">pdf</a>]<br />
</li>
<li>
J. M. Diego, P. Protopapas, H. B. Sadvik, M. Tegmark, <em>Non-parametric inversion of strong lensing systems</em>, MNRAS, 360, 477, (<span class="style5">2005)</span> [<a href="Pub/Diego2005.pdf" target="_blank">pdf</a>]<br
/>
</li>
<li>
A. Klein, P. Protopapas, S. G. Rohoziński, K. Starosta, <em>Kerman-Klein-Dönau-Frauendorf model for odd-odd nuclei: Formal theory</em>, Physical Review C, vol. 69, Issue 3, id. 034338,
<span class="style5"> (2005)</span> [<a href="Pub/PhysRevC.69.034338.pdf" target="_blank">pdf</a>]<br />
</li>
<li>
R. D. Amado, M. Á. Halász, P. Protopapas, <em>Two Skyrmion dynamics with ω mesons</em><strong>,</strong> Physical Review D (Particles and Fields), Volume 61, Issue 7, (<span class="style5">2000)</span> [<a href="Pub/PhysRevD.61.074022.pdf"
target="_blank">pdf</a>] <br /></li>
<li>
Y. Lu, P. Protopapas, R. D. Amado, <em>Nucleon-antinucleon interaction from the Skyrme model. II. Beyond the product ansatz</em>, Physical Review C, 57, 1983-1990, (<span class="style5">1998)</span> [<a href="Pub/PhysRevC.57.1983.pdf"
target="_blank">pdf</a>] <br /></li>
<li>
P. Protopapas, A. Klein, <em>Possible solution of the Coriolis attenuation problem</em>, <span class="style5">(1997)</span>, Phys. Rev. C, 55, 1810-1818 [
<a href="Pub/PhysRevC.55.1810.pdf" target="_blank">pdf</a>] <br />
</li>
<li>
P. Protopapas, A. Klein, <em>Derivation and assessment of strong coupling core-particle model from the Kerman-Klein-Dönau-Frauendorf theory</em>,
<span class="style5">(1997)</span><strong>, </strong>Physical Review C (Nuclear Physics), Volume 55, Issue 2, pp.699-713 [<a href="Pub/PhysRevC.55.699.pdf" target="_blank">pdf</a>] <br />
</li>
<li>
P. Protopapas, A. Klein, <em>Application of the Kerman-Klein Method to the Solution of a Spherical Shell Model for a Deformed Rare-Earth Nucleus</em>,
<span class="style5">(1997)</span>, Physical Review Letters, Volume 78, Issue 23, June 9, pp.4347-4350 [<a href="Pub/PhysRevLett.78.4347.pdf" target="_blank">pdf</a>]<br />
</li>
<li>
P. Protopapas, A. Klein, N. R. Walet,<em> Further application of a semimicroscopic core-particle coupling method to the properties of 155,157Gd and 159Dy</em>,
<span class="style5">(1996)</span>, Physical Review C (Nuclear Physics), Volume 53, Issue 4, April pp.1655-1659 [<a href="Pub/PhysRevC.53.1655.pdf" target="_blank">pdf</a>]<br />
</li>
<li>
P. Protopapas, A. Klein, N. R. Walet,<em> Application of a semimicroscopic core-particle coupling method to the backbending in odd deformed nuclei</em>, <span class="style5">(1996)
<strong></strong></span><strong>, </strong>Physical Review C (Nuclear Physics), Volume 54, Issue 2, pp.638-645 [<a href="Pub/PhysRevC.54.638.pdf" target="_blank">pdf</a>]<br />
</li>
<li>
P. Protopapas, A. Klein, N. R. Walet,<em> Calculation of the properties of the rotational bands of 155,157Gd</em>, <span class="style5">(1994),
</span>Physical Review C (Nuclear Physics), Volume 50, Issue 1, pp.245-256 [<a href="Pub/PhysRevC.50.245.pdf" target="_blank">pdf</a>] </p>
</p>
</li>
</ul>
</div>
</div>
</div>
</main>
<!-- ========== END MAIN ========== -->
<!-- ========== FOOTER ========== -->
<footer-component></footer-component>
<!-- ========== END FOOTER ========== -->
<!-- JS Global Compulsory -->
<script src="assets/front_v3_3/vendor/jquery/dist/jquery.min.js"></script>
<script src="assets/front_v3_3/vendor/jquery-migrate/dist/jquery-migrate.min.js"></script>
<script src="assets/front_v3_3/vendor/bootstrap/dist/js/bootstrap.bundle.min.js"></script>
<!-- JS Implementing Plugins -->
<script src="assets/front_v3_3/vendor/hs-header/dist/hs-header.min.js"></script>
<script src="assets/front_v3_3/vendor/hs-go-to/dist/hs-go-to.min.js"></script>
<script src="assets/front_v3_3/vendor/hs-unfold/dist/hs-unfold.min.js"></script>
<script src="assets/front_v3_3/vendor/hs-mega-menu/dist/hs-mega-menu.min.js"></script>
<script src="assets/front_v3_3/vendor/hs-show-animation/dist/hs-show-animation.min.js"></script>
<script src="assets/front_v3_3/vendor/jquery-validation/dist/jquery.validate.min.js"></script>
<!-- JS Front -->
<script src="assets/front_v3_3/js/theme.min.js"></script>
<!-- IE Support -->
<script>
if (/MSIE \d|Trident.*rv:/.test(navigator.userAgent)) document.write('<script src="assets/front_v3_3/vendor/babel-polyfill/dist/polyfill.js"><\/script>');
</script>
<!-- JS -->
<script src="assets/common_components/js/header.js"></script>
<script src="assets/common_components/js/footer.js"></script>
</body>
</html>