-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcode04.v
201 lines (182 loc) · 6.67 KB
/
code04.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
From Coq Require Import ZArith.ZArith.
From Coq Require Import Strings.String.
From Coq Require Import Program.Equality.
Open Scope string_scope.
Definition Var := string.
Definition Var_eq := String.eqb.
Definition Int := Z.
Definition Int_add := Z.add.
Definition Int_mul := Z.mul.
Inductive Exp : Type :=
| EVar : Var -> Exp
| EInt : Int -> Exp
| EAdd : Exp -> Exp -> Exp
| EMul : Exp -> Exp -> Exp
| EAsg : Var -> Exp -> Exp -> Exp.
Definition Store := Var -> Int.
Definition Config := (Exp * Store)%type.
Definition StoreUpdate (s : Store) (x : Var) (n : Int) : Store :=
fun (y : Var) => if (Var_eq x y) then n else (s y).
Reserved Notation "c1 '-->' c2" (at level 40).
Inductive sstep : Config -> Config -> Prop :=
| SSVar : forall x s,
(EVar x, s) --> (EInt (s x), s)
| SSAdd : forall n m s,
(EAdd (EInt n) (EInt m), s) --> (EInt (Int_add n m), s)
| SSMul : forall n m s,
(EMul (EInt n) (EInt m), s) --> (EInt (Int_mul n m), s)
| SSAsg : forall n x e s,
(EAsg x (EInt n) e, s) --> (e, StoreUpdate s x n)
| SSLAdd : forall e1 e1' e2 s s',
(e1, s) --> (e1', s') ->
(EAdd e1 e2, s) --> (EAdd e1' e2, s')
| SSRAdd : forall n e2 e2' s s',
(e2, s) --> (e2', s') ->
(EAdd (EInt n) e2, s) --> (EAdd (EInt n) e2', s')
| SSLMul : forall e1 e1' e2 s s',
(e1, s) --> (e1', s') ->
(EMul e1 e2, s) --> (EMul e1' e2, s')
| SSRMul : forall n e2 e2' s s',
(e2, s) --> (e2', s') ->
(EMul (EInt n) e2, s) --> (EMul (EInt n) e2', s')
| SSAsg1 : forall x e1 e1' e2 s s',
(e1, s) --> (e1', s') ->
(EAsg x e1 e2, s) --> (EAsg x e1' e2, s')
where "c1 '-->' c2" := (sstep c1 c2).
Definition relation (X : Type) := X -> X -> Prop.
Inductive multi {X : Type} (R : relation X) : relation X :=
| multi_refl : forall (x : X), multi R x x
| multi_step : forall (x y z : X),
R x y ->
multi R y z ->
multi R x z.
Definition multisstep := (multi sstep).
Notation "t1 '-->*' t2" := (multisstep t1 t2) (at level 40).
(* new content *)
Lemma multi_split: forall {X: Type} (R: relation X) x y z,
multi R x y -> multi R y z -> multi R x z.
Proof.
intros. dependent induction H.
- assumption.
- specialize (IHmulti H1).
eapply multi_step. apply H. apply IHmulti.
Qed.
Definition FinalConfig := (Int * Store)%type.
Inductive lstep : Config -> FinalConfig -> Prop :=
| LSInt : forall n s,
lstep (EInt n, s) (n, s)
| LSVar : forall x s,
lstep (EVar x, s) (s x, s)
| LSAdd : forall n m e1 e2 s s' s'',
lstep (e1, s) (n, s') ->
lstep (e2, s') (m, s'') ->
lstep (EAdd e1 e2, s) (Int_add n m, s'')
| LSMul : forall n m e1 e2 s s' s'',
lstep (e1, s) (n, s') ->
lstep (e2, s') (m, s'') ->
lstep (EMul e1 e2, s) (Int_mul n m, s'')
| LSAsg : forall n m x e1 e2 s s' s'',
lstep (e1, s) (n, s') ->
lstep (e2, StoreUpdate s' x n) (m, s'') ->
lstep (EAsg x e1 e2, s) (m, s'').
Definition sigma := fun x => if Var_eq x "bar" then Zpos 7 else Z0.
Definition sigma' := StoreUpdate sigma "foo" (Zpos 3).
Example foobar :
lstep
(EAsg "foo" (EInt (Zpos 3)) (EMul (EVar "foo") (EVar "bar")), sigma)
(Zpos 21, sigma').
Proof.
eapply LSAsg.
- eapply LSInt.
- unfold sigma'.
assert (21%Z = Int_mul 3%Z 7%Z) by auto.
rewrite H. eapply LSMul.
+ eapply LSVar.
+ eapply LSVar.
Qed.
Lemma lemma1Asg:
forall e s s' n,
(e, s) -->* (EInt n, s') ->
forall x e2,
(EAsg x e e2, s) -->* (e2, StoreUpdate s' x n).
Proof.
intros. dependent induction H.
- eapply multi_step. eapply SSAsg. eapply multi_refl.
- destruct y as (e'',s'').
specialize (IHmulti e'' s'' s' n).
assert ((e'', s'') ~= (e'', s'')) as T1 by reflexivity.
assert ((EInt n, s') ~= (EInt n, s')) as T2 by reflexivity.
specialize (IHmulti T1 T2).
specialize (IHmulti x e2).
eapply multi_step. eapply SSAsg1. eapply H. assumption.
Qed.
Lemma lemma1 :
forall e s s' n,
(e, s) -->* (EInt n, s') ->
forall n1 e2,
(EAdd e e2, s) -->* (EAdd (EInt n) e2, s') /\
(EMul e e2, s) -->* (EMul (EInt n) e2, s') /\
(EAdd (EInt n1) e, s) -->* (EAdd (EInt n1) (EInt n), s') /\
(EMul (EInt n1) e, s) -->* (EMul (EInt n1) (EInt n), s').
Proof.
intros. dependent induction H.
- repeat split; apply multi_refl.
- destruct y as (e'',s'').
specialize (IHmulti e'' s'' s' n).
assert ((e'', s'') ~= (e'', s'')) as T1 by reflexivity.
assert ((EInt n, s') ~= (EInt n, s')) as T2 by reflexivity.
specialize (IHmulti T1 T2).
specialize (IHmulti n1 e2).
destruct IHmulti as [HLA [HLM [HRA HRM]]].
repeat split.
+ eapply multi_step. eapply SSLAdd. eapply H. assumption.
+ eapply multi_step. eapply SSLMul. eapply H. assumption.
+ eapply multi_step. eapply SSRAdd. eapply H. assumption.
+ eapply multi_step. eapply SSRMul. eapply H. assumption.
Qed.
Lemma lemma2 :
forall e e' s s' s'' n,
(e, s) --> (e', s'') ->
lstep (e', s'') (n, s') ->
lstep (e, s) (n, s').
Proof.
(* part of the homework *)
Admitted.
Theorem semantic_equivalence :
forall e s s' n, lstep (e, s) (n, s') <-> (e, s) -->* (EInt n, s').
Proof.
unfold iff; split.
- generalize dependent n.
generalize dependent s'.
generalize dependent s.
induction e; intros; inversion H; subst.
+ eapply multi_step. eapply SSVar. eapply multi_refl.
+ eapply multi_refl.
+ specialize (IHe1 s s'0 n0 H2).
specialize (IHe2 s'0 s' m H6).
destruct (lemma1 e1 s s'0 n0 IHe1 n0 e2) as [HLA1 ?].
destruct (lemma1 e2 s'0 s' m IHe2 n0 e2) as [? [? [HRA1 ?]]].
eapply multi_split. eapply multi_split. eapply HLA1. eapply HRA1.
eapply multi_step. eapply SSAdd.
eapply multi_refl.
+ specialize (IHe1 s s'0 n0 H2).
specialize (IHe2 s'0 s' m H6).
destruct (lemma1 e1 s s'0 n0 IHe1 n0 e2) as [? HLM1].
destruct (lemma1 e2 s'0 s' m IHe2 n0 e2) as [? [? [? HRM1]]].
eapply multi_split. eapply multi_split. eapply HLM1. eapply HRM1.
eapply multi_step. eapply SSMul.
eapply multi_refl.
+ specialize (IHe1 s s'0 n0 H2).
specialize (IHe2 (StoreUpdate s'0 v n0) s' n H7).
specialize (lemma1Asg e1 s s'0 n0 IHe1 v e2).
intros L.
eapply multi_split. eapply L. eapply IHe2.
- intros. dependent induction H.
+ constructor.
+ destruct y as (e'',s'').
specialize (IHmulti e'' s'' s' n).
assert ((e'', s'') ~= (e'', s'')) as T1 by reflexivity.
assert ((EInt n, s') ~= (EInt n, s')) as T2 by reflexivity.
specialize (IHmulti T1 T2).
eapply lemma2; eassumption.
Qed.