forked from meta-llama/llama-cookbook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcheckpoint_handler.py
257 lines (191 loc) · 7.5 KB
/
checkpoint_handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
import os
from pathlib import Path
from datetime import datetime
import torch
import time
from torch.distributed.fsdp import (
FullyShardedDataParallel as FSDP,
StateDictType,
FullStateDictConfig, # general model non-sharded, non-flattened params
LocalStateDictConfig, # flattened params, usable only by FSDP
# ShardedStateDictConfig, # un-flattened param but shards, usable by other parallel schemes.
)
from torch.distributed._shard.checkpoint import (
FileSystemReader,
FileSystemWriter,
save_state_dict,
load_state_dict,
)
from torch.distributed.checkpoint.default_planner import (
DefaultSavePlanner,
DefaultLoadPlanner,
)
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
import torch.distributed._shard.checkpoint as dist_cp
import torch.distributed as dist
def get_save_dir(cfg):
return os.path.join(
cfg.dist_checkpoint_root_folder,
cfg.dist_checkpoint_folder,
cfg.name
)
def get_date_of_run():
"""create date and time for file save uniqueness
example: 2022-05-07-08:31:12_PM'
"""
date_of_run = datetime.now().strftime("%Y-%m-%d-%I:%M:%S_%p")
print(f"--> current date and time of run = {date_of_run}")
return date_of_run
# create singleton saving policies to avoid making over and over
fullstate_save_policy = FullStateDictConfig(offload_to_cpu=True, rank0_only=True)
def load_model_sharded(model, rank, cfg):
# torch.manual_seed(103)
folder_name = get_save_dir(cfg)
load_dir = Path.cwd() / folder_name
if not load_dir.exists():
if rank == 0:
print(f"No sharded_state_dict checkpoint directory found...skipping")
return
if rank == 0:
print(f"loading model from model path: {load_dir} ")
reader = FileSystemReader(load_dir)
with FSDP.state_dict_type(model, StateDictType.SHARDED_STATE_DICT):
checkpoint = {"model": model.state_dict()}
if rank == 0:
ck = checkpoint.keys()
print(f" checkpoint key len = {len(ck)} and \n keys = {ck}")
dist_cp.load_state_dict(
state_dict=checkpoint,
storage_reader=reader,
)
if rank == 0:
print(f"checkpoint after load_state_dict()")
ck = checkpoint.keys()
print(f" checkpoint key len = {len(ck)} and \n keys = {ck}")
model.load_state_dict(checkpoint["model"])
if rank == 0:
print(f"Sharded state checkpoint loaded from {load_dir}")
def save_model_and_optimizer_sharded(model, rank, cfg,optim=None):
"""save model and optimizer via sharded_state_dict to save_dir"""
folder_name = get_save_dir(cfg)
save_dir = Path.cwd() / folder_name
if rank == 0:
print(f"Saving model to {save_dir}")
distributed_writer = dist_cp.FileSystemWriter(
save_dir,
)
t0 = time.perf_counter()
save_config(cfg)
with FSDP.state_dict_type(model, StateDictType.SHARDED_STATE_DICT):
state_dict = {"model": model.state_dict()}
if optim is not None:
state_dict["optim"] = FSDP.optim_state_dict(model, optim)
dist_cp.save_state_dict(
state_dict=state_dict,
storage_writer=distributed_writer,
planner=DefaultSavePlanner(),
)
dist.barrier()
t1 = time.perf_counter()
if rank == 0:
print(f"Sharded state checkpoint saved to {save_dir}")
print(
f"Checkpoint Time = {t1-t0:.4f}\n"
)
def save_model_checkpoint(
model,
optimizer,
rank,
cfg,
epoch=1,
):
"""saving model via rank0 cpu streaming and full_state_dict"""
with FSDP.state_dict_type(
model, StateDictType.FULL_STATE_DICT, fullstate_save_policy
):
cpu_state = model.state_dict()
print(f"saving process: rank {rank} done w model state_dict\n")
save_config(cfg)
if rank == 0:
print(f"--> saving model ...")
# create save path
folder_name = get_save_dir(cfg)
save_dir = Path.cwd() / folder_name
save_dir.mkdir(parents=True, exist_ok=True)
save_name = "model.pt"
save_full_path = str(save_dir) + "/" + save_name
# save model
torch.save(cpu_state, save_full_path)
print(f"model checkpoint saved for epoch {epoch} at {save_full_path}\n")
def load_model_checkpoint(model, rank, cfg):
"""load local checkpoint to rank0 cpu
must be called * before * passing to FSDP"""
if rank != 0:
return
# where is the checkpoint at...
# full_state_dict_model_path = (
# Path.cwd() / cfg.checkpoint_folder / cfg.checkpoint_model_filename
# )
full_state_dict_model_path = os.path.join(get_save_dir(cfg), "model.pt")
model_checkpoint = torch.load(full_state_dict_model_path)
# integrate into loaded model
model.load_state_dict(model_checkpoint)
print(f"model checkpoint loaded to rank0 cpu")
def save_optimizer_checkpoint(model, optimizer, rank, cfg, epoch=1):
"""save optimizer state via full state dict"""
print(f"--> optim state call on rank {rank}\n")
# pull all sharded optimizer states to rank0 cpu...
optim_state = FSDP.full_optim_state_dict(model, optimizer)
print(f"optim state dict ready on {rank} and len of {len(optim_state)}\n")
if rank == 0:
folder_name = get_save_dir(cfg)
save_dir = Path.cwd() / folder_name
save_dir.mkdir(parents=True, exist_ok=True)
opt_save_name = (
"optimizer" + "-" + cfg.model.model_name + "-" + str(epoch) + ".pt"
)
opt_save_full_path = save_dir / opt_save_name
print(f"--> saving optimizer state...")
torch.save(optim_state, opt_save_full_path)
print(f"--> saved {opt_save_full_path} to disk")
def load_optimizer_checkpoint(model, optimizer_checkpoint_path, rank):
"""load an fsdp optimizer full_state checkpoint using scatter method
this ensures only rank 0 loads the optimizer state dict and scatters to other ranks
"""
if not optimizer_checkpoint_path.is_file():
print(
f"warning - optimizer checkpoint not present {optimizer_checkpoint_path}. Returning. "
)
return
full_osd = None
if rank == 0:
full_osd = torch.load(optimizer_checkpoint_path)
# called from all ranks, though only rank0 has a valid param for full_osd
sharded_osd = FSDP.scatter_full_optim_state_dict(full_osd, model)
print(f"optimizer shard loaded on rank {rank}")
def load_sharded_model_single_gpu(model,model_path):
reader = FileSystemReader(model_path)
state_dict = {
"model": model.state_dict()
}
dist_cp.load_state_dict(
state_dict=state_dict,
storage_reader= FileSystemReader(model_path),
no_dist=True,
)
model.load_state_dict(state_dict["model"])
print(f"Sharded state checkpoint loaded from {model_path}")
return model
def save_config(cfg):
import json
folder_name = get_save_dir(cfg)
save_dir = Path.cwd() / folder_name
save_dir.mkdir(parents=True, exist_ok=True)
save_name = "config.json"
save_full_path = str(save_dir) + "/" + save_name
with open(save_full_path, "w") as f:
json.dump(cfg.to_dict(), f, indent=4)
print(f"config saved to {save_full_path}")
return save_full_path