-
Notifications
You must be signed in to change notification settings - Fork 0
/
commonmodulus_attack.py
56 lines (49 loc) · 1.78 KB
/
commonmodulus_attack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#! /usr/bin/env python3
import gmpy2
import binascii
class CommonModulusAttack():
def __init__(self, attackobjs):
self.a = 0
self.b = 0
self.m = 0
self.i = 0
self.attackobjs = attackobjs
self.n = attackobjs[0].pub_key.n
[self.e1, self.e2] = [ attackobjs[u].pub_key.e for u in range(2)]
[self.c1, self.c2] = [ attackobjs[u].cipherdec for u in range(2)]
def gcd(self, num1, num2):
"""
This function os used to find the GCD of 2 numbers.
"""
if num1 < num2:
num1, num2 = num2, num1
while num2 != 0:
num1, num2 = num2, num1 % num2
return num1
def extended_euclidean(self):
"""
The value a is the modular multiplicative inverse of e1 and e2.
b is calculated from the eqn: (e1*a) + (e2*b) = gcd(e1, e2)
e1: exponent 1
e2: exponent 2
"""
self.a = gmpy2.invert(self.e1, self.e2)
self.b = (float(self.gcd(self.e1, self.e2)-(self.a*self.e1)))/float(self.e2)
def modular_inverse(self):
"""
i is the modular multiplicative inverse of c2 and N.
i^-b is equal to c2^b. So if the value of b is -ve, we
have to find out i and then do i^-b.
Final plain text is given by m = (c1^a) * (i^-b) %N
c1: cipher text 1
c2: cipher text 2
n: Modulus
"""
i = gmpy2.invert(self.c2, self.n)
mx = pow(self.c1, self.a, self.n)
my = pow(i, int(-self.b), self.n)
self.m= mx * my % self.n
def print_value(self):
self.m=str(hex(self.m))[2:] #long
self.m=binascii.unhexlify(self.m)
return self.m