forked from mldlwizard/onnx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathschema.h
1281 lines (1110 loc) · 42.4 KB
/
schema.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <climits>
#include <cstring>
#include <functional>
#include <initializer_list>
#include <iostream>
#include <limits>
#include <memory>
#include <ostream>
#include <set>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "data_type_utils.h"
#include "onnx/common/common.h"
#include "onnx/common/constants.h"
#include "onnx/defs/shape_inference.h"
#include "onnx/onnx-operators_pb.h"
namespace ONNX_NAMESPACE {
struct FunctionBodyBuildContext {
virtual const AttributeProto* getAttribute(const std::string& name) const = 0;
virtual bool hasInput(int inputIndex) const = 0;
virtual bool hasOutput(int inputIndex) const = 0;
// getInputType(i) should return null for missing optional inputs, or if
// type-inference could not infer the input-type (erroneous model).
virtual const TypeProto* getInputType(int inputIndex) const = 0;
virtual ~FunctionBodyBuildContext() {}
};
struct FunctionBodyBuildContextImpl : public FunctionBodyBuildContext {
// Input_types: use a default TypeProto for missing types. We use a different convention
// here (from FunctionBodyBuildContext) to simplify python interoperability.
// The default value for input_types is included only for backward compatibility.
// It can be used for functions that do not depend on the type-context, but
// will not be sufficient for functions that do use the type-context.
FunctionBodyBuildContextImpl(const NodeProto& node_proto, const std::vector<TypeProto>& input_types = {})
: node_proto_(node_proto), input_types_(input_types) {
for (auto& attr : node_proto.attribute()) {
attributesByName_[attr.name()] = &attr;
}
}
const AttributeProto* getAttribute(const std::string& name) const {
auto iter = attributesByName_.find(name);
if (iter == attributesByName_.end()) {
return nullptr;
} else {
return iter->second;
}
}
bool hasInput(int inputIndex) const {
if (inputIndex >= node_proto_.input_size())
return false;
return node_proto_.input(inputIndex) != "";
}
bool hasOutput(int inputIndex) const {
if (inputIndex >= node_proto_.output_size())
return false;
return node_proto_.output(inputIndex) != "";
}
const TypeProto* getInputType(int inputIndex) const {
if (inputIndex < 0) return nullptr;
size_t j = static_cast<size_t>(inputIndex);
if (j >= input_types_.size())
return nullptr;
// Convert default value (no variant set) into null.
if (input_types_[j].value_case() == TypeProto::ValueCase::VALUE_NOT_SET)
return nullptr;
return &input_types_[j];
}
std::unordered_map<std::string, const AttributeProto*> attributesByName_;
NodeProto node_proto_;
std::vector<TypeProto> input_types_;
};
using FunctionBodyQueryFunction =
std::function<bool(FunctionBodyBuildContext&)>;
class OpSchema;
using ContextDependentFunctionBodyBuilder = std::function<
bool(const FunctionBodyBuildContext&, const OpSchema&, FunctionProto&)>;
class SchemaError final : public std::runtime_error {
public:
using std::runtime_error::runtime_error;
SchemaError(const std::string& message) : std::runtime_error(message) {}
const char* what() const noexcept override {
if (!expanded_message_.empty()) {
return expanded_message_.c_str();
}
return std::runtime_error::what();
}
void AppendContext(const std::string& context) {
expanded_message_ = ONNX_NAMESPACE::MakeString(
std::runtime_error::what(), "\n\n==> Context: ", context);
}
private:
std::string expanded_message_;
};
#define fail_schema(...) \
throw ONNX_NAMESPACE::SchemaError(ONNX_NAMESPACE::MakeString(__VA_ARGS__));
using OperatorSetVersion = int;
using DataTypeSet = std::unordered_set<DataType>;
// Type constraint map. Key is type string. Value is data type set and
// description.
using TypeConstraintMap =
std::unordered_map<std::string, std::pair<DataTypeSet, std::string>>;
/**
* @brief A class to record the schema of an op.
*
* OpSchema records the common interface of an op specified by its name.
*
* To register an OpSchema, one can use the macro ONNX_OPERATOR_SCHEMA(name) and
* then append the various functions in the class. For example, for an op
* that takes in two inputs, one output, and the first input and output
* could be in-place, can be written as
*
* ONNX_OPERATOR_SCHEMA(name)
* .NumInputs(2).NumOutputs(1).AllowConsumed({{0, 0}});
*
* To manufacture methods that may be used to register an OpSchema
* non-statically, the following may be used:
*
* ONNX_OPERATOR_SET_SCHEMA(name, version, OpSchema()
* .NumInputs(2).NumOutputs(1).AllowConsumed({{0, 0}}));
*/
class OpSchema final {
public:
// Formal parameter options.
enum FormalParameterOption : uint8_t {
// The formal parameter is single and not optional.
// Number of supplied actual parameters must be 1.
Single = 0,
// The formal parameter is single and optional.
// Number of supplied actual parameters may be 0 or 1.
Optional = 1,
// The formal parameter is variadic.
// Number of supplied actual parameters must be N or more, where
// the minimum value N is indicated separately (default value 1).
Variadic = 2,
};
enum DifferentiationCategory : uint8_t {
// Whether this formal parameter is differentiable or not cannot
// be statically determined. It also covers variadic formal
// parameters which contain both of differentiable and
// non-differentiable variables.
Unknown = 0,
// This formal parameter is differentiable. That is, this formal
// parameter can be differentiable input of Gradient operator.
Differentiable = 1,
// This formal parameter is not differentiable. That is, this formal
// parameter can not be differentiable input of Gradient operator.
NonDifferentiable = 2
};
// Formal parameter represenation, including input/output name, typeStr,
// description, and type constraints.
class FormalParameter final {
public:
// Constructor.
FormalParameter() = default;
explicit FormalParameter(
std::string name,
DataTypeSet allowed_type_set,
std::string type_str,
const std::string& description,
FormalParameterOption param_option = Single,
bool is_homogeneous = true,
int min_arity = 1,
DifferentiationCategory differentiation_category = Unknown)
: name_(std::move(name)),
type_set_(std::move(allowed_type_set)),
type_str_(std::move(type_str)),
#ifndef __ONNX_NO_DOC_STRINGS
description_(description),
#endif
param_option_(param_option),
is_homogeneous_(is_homogeneous),
min_arity_(min_arity),
differentiation_category_(differentiation_category) {
#ifdef __ONNX_NO_DOC_STRINGS
ONNX_UNUSED_PARAMETER(description);
#endif
}
explicit FormalParameter(
std::string name,
const std::string& description,
std::string type_str,
FormalParameterOption param_option = Single,
bool is_homogeneous = true,
int min_arity = 1,
DifferentiationCategory differentiation_category = Unknown)
: name_(std::move(name)),
type_str_(std::move(type_str)),
#ifndef __ONNX_NO_DOC_STRINGS
description_(description),
#endif
param_option_(param_option),
is_homogeneous_(is_homogeneous),
min_arity_(min_arity),
differentiation_category_(differentiation_category) {
#ifdef __ONNX_NO_DOC_STRINGS
ONNX_UNUSED_PARAMETER(description);
#endif
}
// Get formal parameter name.
const std::string& GetName() const;
// Get allowed data types.
const DataTypeSet& GetTypes() const;
// Get formal parameter type string.
const std::string& GetTypeStr() const;
// Get formal parameter description.
const std::string& GetDescription() const;
// Get the parameter option, it could be Single, Optional or Variadic.
FormalParameterOption GetOption() const;
// Get whether a variadic parameter requires all to be of same type
bool GetIsHomogeneous() const;
// Get minimum arity. Applicable only in the Variadic case.
int GetMinArity() const;
// Get the differentiation property of this formal parameter.
DifferentiationCategory GetDifferentiationCategory() const;
private:
friend class OpSchema;
DataTypeSet& MutableTypes();
// Formal parameter name.
std::string name_;
// A set of data types supported for <*this> formal parameter.
// It should contain at least one element if this formal parameter is good.
DataTypeSet type_set_;
// The <parameter type> string specified when registring an op.
// It could be a supported data type or a type constraint key, which
// maps to a set of supported data types.
std::string type_str_;
// Formal parameter description.
std::string description_;
// Formal parameter option.
FormalParameterOption param_option_;
// For variadic parameters, a flag indicating if all parameters must be of
// same type
bool is_homogeneous_;
// Minimum number of parameters expected. Applicable only for Variadic.
int min_arity_;
// True if this parameter can be an differentiable inputs of Gradient.
// Otherwise, using this parameter as an differentiable inputs of Gradient
// is prohibited.
DifferentiationCategory differentiation_category_;
};
enum class SupportType : uint8_t {
COMMON, // Supported by all frameworks that support this IR.
EXPERIMENTAL, // This OP is experimental and can be changed or removed in
// the future.
};
OpSchema() : OpSchema("unknown", "unknown", 0) {}
OpSchema(std::string name, std::string file, int line)
: name_(std::move(name)),
file_(std::move(file)),
line_(line),
support_(SupportType::COMMON) {}
/**
* @brief Returns the file that the op schema is registered from.
*/
const std::string& file() const {
return file_;
}
/**
* @brief Returns the line in file that the op schema is registered from.
*/
int line() const {
return line_;
}
/**
* @brief Returns the support level of the op schema.
*/
SupportType support_level() const {
return support_;
}
/**
* @brief Returns the docstring of the op schema.
*/
const char* doc() const {
return doc_.empty() ? nullptr : doc_.c_str();
}
// Check if input and output types fall into valid set and match each other
void CheckInputOutputType(struct InferenceContext&) const;
/**
* @brief Verifies if a NodeProto matches the pattern specified in
* the schema.
*/
void Verify(const NodeProto& node) const;
// Functions to set the property of the operator schemas.
// Sets the number of inputs, either a fixed number or a min and a max.
/**
* The earliest operator set version which this operator was
* present in. If an operator has had no BC-breaking changes,
* this is simply the first operator set the operator was a member
* of; if it has had BC-breaking changes, then for the semantics
* /as described/ in the OpSchema entry, this version describes
* the operator set which introduced the BC-breaking change.
*
* For example, suppose op Foo was added in v3, and had a BC-breaking
* change in v6. Then there will be an op schema entry for Foo with
* SinceVersion(3), and another, updated op schema entry for Foo
* with SinceVersion(6).
*/
OpSchema& SinceVersion(OperatorSetVersion n); // aka int
/**
* Marks this op as deprecated as of it's since_version. This will cause the
* Schema() lookup functions to return nullptr when the version is in the
* deprecated range.
*/
OpSchema& Deprecate();
bool Deprecated() const {
return deprecated_;
}
/**
* @brief Input could be one of the values specified in allowed_input_nums.
*/
OpSchema& NumInputs(std::set<int> allowed_input_nums);
/**
* @brief Output could be one of the values specified in allowed_output_nums.
*/
OpSchema& NumOutputs(std::set<int> allowed_output_nums);
// Shape Inference
//
// Note that signatures are defined to allow for forward-declaring
// any structs used from ir.h
OpSchema& TypeAndShapeInferenceFunction(InferenceFunction inferenceFunction);
InferenceFunction GetTypeAndShapeInferenceFunction() const {
return tensor_inference_function_ ? tensor_inference_function_
: dummyInferenceFunction;
}
// Set the support level for the op schema.
OpSchema& SetSupportLevel(SupportType supportType);
// Functions to do documentation for the operator schema.
// This may be disabled to save memory.
OpSchema& SetDoc(const char* doc) {
#ifndef __ONNX_NO_DOC_STRINGS
SetDoc(std::string(doc));
#else
ONNX_UNUSED_PARAMETER(doc);
#endif
return *this;
}
OpSchema& SetDoc(const std::string& doc) {
#ifndef __ONNX_NO_DOC_STRINGS
doc_ = doc;
#else
ONNX_UNUSED_PARAMETER(doc);
#endif
return *this;
}
// Functions to specify name for the operator schema.
OpSchema& SetName(const char* name);
OpSchema& SetName(std::string name);
// Functions to specify code location for the operator schema.
OpSchema& SetLocation(const char* file, int line);
OpSchema& SetLocation(std::string file, int line);
// Functions to specify domain for the operator schema.
// Default domain value (ONNX_DOMAIN) means it's ONNX domain.
OpSchema& SetDomain(const char* domain);
OpSchema& SetDomain(std::string domain);
struct Attribute final {
Attribute(
std::string name_,
std::string description_,
AttributeProto::AttributeType type_,
bool required_)
: name(std::move(name_)),
description(std::move(description_)),
type(type_),
required(required_),
default_value() {}
Attribute(
std::string name_,
std::string description_,
AttributeProto default_value_)
: name(std::move(name_)),
description(std::move(description_)),
type(default_value_.type()),
required(false),
default_value(std::move(default_value_)) {}
const std::string name;
const std::string description;
AttributeProto::AttributeType type;
bool required;
AttributeProto default_value;
};
OpSchema& Attr(Attribute attr);
// Register "optional" attribute with default value.
#define ATTR_SETTER_WITH_DEFAULT_VALUE(TypeName) \
OpSchema& Attr( \
std::string name, \
std::string description, \
AttributeProto::AttributeType type, \
const TypeName& defaultValue); \
/* non-STL wrapper to reduce binary size */ \
OpSchema& Attr( \
const char* name, \
const char* description, \
AttributeProto::AttributeType type, \
const TypeName& defaultValue); \
OpSchema& Attr( \
std::string name, \
std::string description, \
AttributeProto::AttributeType type, \
const std::vector<TypeName>& defaultValue);
ATTR_SETTER_WITH_DEFAULT_VALUE(int64_t)
ATTR_SETTER_WITH_DEFAULT_VALUE(float)
ATTR_SETTER_WITH_DEFAULT_VALUE(std::string)
ATTR_SETTER_WITH_DEFAULT_VALUE(TensorProto)
ATTR_SETTER_WITH_DEFAULT_VALUE(GraphProto)
// Register "required" attribute without default value.
OpSchema& Attr(
std::string name,
std::string description,
AttributeProto::AttributeType type,
bool required = true);
// Non-STL wrapper to reduce binary size
OpSchema& Attr(
const char* name,
const char* description,
AttributeProto::AttributeType type,
bool required = true);
OpSchema& AllowUncheckedAttributes();
// Type constraint.
struct TypeConstraintParam final {
TypeConstraintParam(
std::string type_param_str_,
std::vector<std::string> allowed_type_strs_,
std::string description_)
: type_param_str(std::move(type_param_str_)),
allowed_type_strs(std::move(allowed_type_strs_)),
description(std::move(description_)) {}
// Type parameter string, for example, "T", "T1", etc.
std::string type_param_str;
// Allowed type strings for <*this> type parameter, for example,
// "tensor(float)".
std::vector<std::string> allowed_type_strs;
// Type parameter description.
std::string description;
};
// Grammar for type strings used in Input(), Output().
// <type> ::= <data_type> |
// tensor(<data_type>) |
// seq(<type>) |
// map(<data_type>, <type>) |
// <type_parameter>
// <data_type> :: = float | int32 | string | bool | uint8
// | int8 | uint16 | int16 | int64 | float16 | double
// <type_parameter> ::= any type parameter string, say "T".
//
// NOTE: 1) <type_parameter> will always be together with a type constraints
// specification.
// 2) <type> ::= <data_type> means the data is scalar (zero dimension).
//
// Example:
// ONNX_OPERATOR_SET_SCHEMA(Sum, 1, OpSchema()
// .Input(0, "input_a", "the first input", "T")
// .Input(1, "input_b", "the second input", "T")
// .Output(0, "sum", "the sum of two numbers", "T")
// .TypeConstraint("T", {"float", "double", "int32"}, "allowed data types for
// sum."))
//
// Optional = true means that the input might have empty input value
// (represented as "") in the graph even though the later inputs have values.
// It's useful for complex situation when there are several independent
// optional inputs.
OpSchema& Input(
int n,
std::string name,
const std::string& description,
std::string type_str,
FormalParameterOption param_option = Single,
bool is_homogeneous = true,
int min_arity = 1,
DifferentiationCategory differentiation_category = Unknown);
// Non-STL wrapper to reduce binary size
OpSchema& Input(
int n,
const char* name,
const char* description,
const char* type_str,
FormalParameterOption param_option = Single,
bool is_homogeneous = true,
int min_arity = 1,
DifferentiationCategory differentiation_category = Unknown);
OpSchema& Output(
int n,
std::string name,
const std::string& description,
std::string type_str,
FormalParameterOption param_option = Single,
bool is_homogeneous = true,
int min_arity = 1,
DifferentiationCategory differentiation_category = Unknown);
// Non-STL wrapper to reduce binary size
OpSchema& Output(
int n,
const char* name,
const char* description,
const char* type_str,
FormalParameterOption param_option = Single,
bool is_homogeneous = true,
int min_arity = 1,
DifferentiationCategory differentiation_category = Unknown);
OpSchema& TypeConstraint(
std::string type_str,
std::vector<std::string> constraints,
std::string description);
// Non-STL wrapper to reduce binary size
OpSchema& TypeConstraint(
const char* type_str,
std::initializer_list<const char*> constraints,
const char* description);
// Convenience members for types
// All high-precision numeric types.
static const std::vector<std::string>&
numeric_types_for_math_reduction_with_bfloat() {
static const std::vector<std::string>
numeric_types_for_math_reduction_with_bfloat = {"tensor(uint32)",
"tensor(uint64)",
"tensor(int32)",
"tensor(int64)",
"tensor(float16)",
"tensor(float)",
"tensor(double)",
"tensor(bfloat16)"};
return numeric_types_for_math_reduction_with_bfloat;
}
static const std::vector<std::string>& numeric_types_for_math_reduction() {
static const std::vector<std::string> numeric_types_for_math_reduction = {
"tensor(uint32)",
"tensor(uint64)",
"tensor(int32)",
"tensor(int64)",
"tensor(float16)",
"tensor(float)",
"tensor(double)"};
return numeric_types_for_math_reduction;
}
static const std::vector<std::string>& all_numeric_types_with_bfloat() {
static const std::vector<std::string> all_numeric_types_with_bfloat = {
"tensor(uint8)",
"tensor(uint16)",
"tensor(uint32)",
"tensor(uint64)",
"tensor(int8)",
"tensor(int16)",
"tensor(int32)",
"tensor(int64)",
"tensor(float16)",
"tensor(float)",
"tensor(double)",
"tensor(bfloat16)"};
return all_numeric_types_with_bfloat;
}
static const std::vector<std::string>& all_numeric_types() {
static const std::vector<std::string> all_numeric_types = {
"tensor(uint8)",
"tensor(uint16)",
"tensor(uint32)",
"tensor(uint64)",
"tensor(int8)",
"tensor(int16)",
"tensor(int32)",
"tensor(int64)",
"tensor(float16)",
"tensor(float)",
"tensor(double)"};
return all_numeric_types;
}
static const std::vector<std::string>& all_numeric_sequence_types() {
static const std::vector<std::string> all_numeric_sequence_types = {
"seq(tensor(uint8))",
"seq(tensor(uint16))",
"seq(tensor(uint32))",
"seq(tensor(uint64))",
"seq(tensor(int8))",
"seq(tensor(int16))",
"seq(tensor(int32))",
"seq(tensor(int64))",
"seq(tensor(float16))",
"seq(tensor(float))",
"seq(tensor(double))"};
return all_numeric_sequence_types;
}
static const std::vector<std::string>& all_tensor_types() {
static const std::vector<std::string> all_tensor_types = {
"tensor(uint8)",
"tensor(uint16)",
"tensor(uint32)",
"tensor(uint64)",
"tensor(int8)",
"tensor(int16)",
"tensor(int32)",
"tensor(int64)",
"tensor(float16)",
"tensor(float)",
"tensor(double)",
"tensor(string)",
"tensor(bool)",
"tensor(complex64)",
"tensor(complex128)"};
return all_tensor_types;
}
static const std::vector<std::string>& all_tensor_types_with_bfloat() {
static const std::vector<std::string> all_tensor_types_with_bfloat = {
"tensor(uint8)",
"tensor(uint16)",
"tensor(uint32)",
"tensor(uint64)",
"tensor(int8)",
"tensor(int16)",
"tensor(int32)",
"tensor(int64)",
"tensor(bfloat16)",
"tensor(float16)",
"tensor(float)",
"tensor(double)",
"tensor(string)",
"tensor(bool)",
"tensor(complex64)",
"tensor(complex128)"};
return all_tensor_types_with_bfloat;
}
static const std::vector<std::string>& all_tensor_sequence_types() {
static const std::vector<std::string> all_tensor_sequence_types = {
"seq(tensor(uint8))",
"seq(tensor(uint16))",
"seq(tensor(uint32))",
"seq(tensor(uint64))",
"seq(tensor(int8))",
"seq(tensor(int16))",
"seq(tensor(int32))",
"seq(tensor(int64))",
"seq(tensor(float16))",
"seq(tensor(float))",
"seq(tensor(double))",
"seq(tensor(string))",
"seq(tensor(bool))",
"seq(tensor(complex64))",
"seq(tensor(complex128))"};
return all_tensor_sequence_types;
}
// Calls the passed function with `this` as an argument. Useful for
// adding docs for temlated/macro ops.
OpSchema& FillUsing(const std::function<void(OpSchema&)>& populator);
friend std::ostream& operator<<(std::ostream& out, const OpSchema& schema);
const std::string& domain() const {
return domain_;
}
const std::map<std::string, Attribute>& attributes() const {
return attributes_;
}
// Get input formal parameters.
const std::vector<FormalParameter>& inputs() const {
return inputs_;
}
// Get output formal parameters.
const std::vector<FormalParameter>& outputs() const {
return outputs_;
}
const std::vector<TypeConstraintParam>& typeConstraintParams() const {
return type_constraint_params_;
}
const std::string& Name() const {
return name_;
}
OperatorSetVersion SinceVersion() const {
return since_version_;
}
int since_version() const {
return since_version_;
}
bool deprecated() const {
return deprecated_;
}
int min_input() const {
return min_input_;
}
int max_input() const {
return max_input_;
}
int min_output() const {
return min_output_;
}
int max_output() const {
return max_output_;
}
bool has_type_and_shape_inference_function() const {
return tensor_inference_function_ ? true : false;
}
bool HasFunction() const {
return function_body_.node_size() > 0;
}
OpSchema& FunctionBody(const std::vector<NodeProto>& func_nodes);
OpSchema& FunctionBody(
const std::vector<NodeProto>& func_nodes,
const std::vector<OperatorSetIdProto>& opsets);
const FunctionProto* GetFunction() const;
bool HasContextDependentFunction() const {
return functionBuilder_ != nullptr;
}
OpSchema& SetContextDependentFunctionBodyBuilder(
ContextDependentFunctionBodyBuilder);
bool BuildContextDependentFunction(
const FunctionBodyBuildContext& ctx,
FunctionProto& functionProto) const;
// Verifies that the schema is valid and all specifications are compatible.
// It will also parse all type strings specified for inputs/outputs into valid
// TypeProto and create global unique string pointer as the DataType for
// efficiency.
void Finalize();
// Build function with information stored in opschema
void BuildFunction(
FunctionProto& function_body,
const std::vector<OperatorSetIdProto>& relied_opsets = {}) const;
private:
void ParseAndSetTypes(
/*out*/ std::vector<OpSchema::FormalParameter>* formalParameters);
std::string name_;
std::string file_;
std::string doc_;
// Default domain value ("") means it's ONNX domain.
std::string domain_ = ONNX_DOMAIN;
std::map<std::string, Attribute> attributes_{};
bool allows_unchecked_attributes_ = false;
std::vector<FormalParameter> inputs_;
std::vector<FormalParameter> outputs_;
std::vector<TypeConstraintParam> type_constraint_params_;
TypeConstraintMap type_constraints_;
int line_ = 0;
SupportType support_;
int min_input_ = 0;
int max_input_ = 0;
int min_output_ = 0;
int max_output_ = 0;
// The default is a little goofy, since it is never what you want
OperatorSetVersion since_version_ = 1;
bool deprecated_{};
std::function<bool(int)> num_inputs_allowed_ = [](int) { return true; };
std::function<bool(int)> num_outputs_allowed_ = [](int) { return true; };
InferenceFunction tensor_inference_function_;
FunctionProto function_body_;
ContextDependentFunctionBodyBuilder functionBuilder_;
};
// Map type to store operator schemas. The format is,
// <OpName, <Domain, <OperatorSetVersion, OpSchema>>>.
using OpName_Domain_Version_Schema_Map = std::unordered_map<
std::string,
std::unordered_map<std::string, std::map<OperatorSetVersion, OpSchema>>>;
class ISchemaRegistry {
public:
virtual ~ISchemaRegistry() = default;
virtual const OpSchema* GetSchema(
const std::string& key,
const int maxInclusiveVersion,
const std::string& domain = ONNX_DOMAIN) const = 0;
};
/**
* @brief A registry to hold all the operator schemas.
*/
class OpSchemaRegistry final : public ISchemaRegistry {
public:
// A singleton class to store domain to min/max op_set version map, as well as
// domain to last-release op_set version map.
class DomainToVersionRange final {
public:
DomainToVersionRange() {
// Increase the highest version when you make BC-breaking changes to the
// operator schema on specific domain. Update the lowest version when it's
// determined to remove too old version history.
map_[ONNX_DOMAIN] = std::make_pair(1, 14);
map_[AI_ONNX_ML_DOMAIN] = std::make_pair(1, 2);
map_[AI_ONNX_TRAINING_DOMAIN] = std::make_pair(1, 1);
// ONNX's preview domain contains operators subject to change, so
// versining is not meaningful and that domain should have only one
// version.
map_[AI_ONNX_PREVIEW_TRAINING_DOMAIN] = std::make_pair(1, 1);
// Version corresponding last release of ONNX. Update this to match with
// the max version above in a *release* version of ONNX. But in other
// versions, the max version may be ahead of the last-release-version.
last_release_version_map_[ONNX_DOMAIN] = 13;
last_release_version_map_[AI_ONNX_ML_DOMAIN] = 2;
last_release_version_map_[AI_ONNX_TRAINING_DOMAIN] = 1;
last_release_version_map_[AI_ONNX_PREVIEW_TRAINING_DOMAIN] = 1;
}
const std::unordered_map<std::string, std::pair<int, int>>& Map() const {
return map_;
}
const std::unordered_map<std::string, int>& LastReleaseVersionMap() const {
return last_release_version_map_;
}
// Add customized domain to min/max version.
// Onnx partners are able to use onnx operator schema api to
// register customized op in their own domain.
// Can optionally specify last_release_version (to make it similar to
// standard ONNX domains as above). Custom-domains are free to interpret
// this as appropriate (that is, as relative to releases of custom-domain
// as opposed to ONNX releases).
void AddDomainToVersion(
const std::string& domain,
int min_version,
int max_version,
int last_release_version = -1) {
std::lock_guard<std::mutex> lock(mutex_);
assert(map_.end() == map_.find(domain));
map_[domain] = std::make_pair(min_version, max_version);
// If a last-release-version is not explicitly specified, use max as
// last-release-version.
if (last_release_version == -1)
last_release_version = max_version;
assert(
last_release_version_map_.end() ==
last_release_version_map_.find(domain));
last_release_version_map_[domain] = last_release_version;
}
static DomainToVersionRange& Instance();
private:
// Key: domain. Value: <lowest version, highest version> pair.
std::unordered_map<std::string, std::pair<int, int>> map_;
// Key: domain. Value: most recent release opset version. Note that
// the highest opset version may be ahead of the most recent release's opset
// version.
std::unordered_map<std::string, int> last_release_version_map_;
std::mutex mutex_;
};
class OpSchemaRegisterOnce final {
public:
OpSchemaRegisterOnce(OpSchema& op_schema) {
try {
op_schema.Finalize();
auto& m = GetMapWithoutEnsuringRegistration();
auto& op_name = op_schema.Name();
auto& op_domain = op_schema.domain();
auto ver = op_schema.SinceVersion();
if (m[op_name][op_domain].count(ver)) {
const auto& schema = m[op_name][op_domain][ver];
std::stringstream err;
err << "Trying to register schema with name " << op_name
<< " (domain: " << op_domain << " version: " << ver
<< ") from file " << op_schema.file() << " line "
<< op_schema.line() << ", but it is already registered from file "
<< schema.file() << " line " << schema.line() << std::endl;
fail_schema(err.str());
}
auto ver_range_map = DomainToVersionRange::Instance().Map();
auto ver_range_it = ver_range_map.find(op_domain);
if (ver_range_it == ver_range_map.end()) {
std::stringstream err;
err << "Trying to register schema with name " << op_name
<< " (domain: " << op_domain << " version: " << ver
<< ") from file " << op_schema.file() << " line "
<< op_schema.line() << ", but it its domain is not"
<< " known by the checker." << std::endl;
fail_schema(err.str());
}
auto lower_bound_incl = ver_range_it->second.first;
auto upper_bound_incl = ver_range_it->second.second;
if (!(lower_bound_incl <= ver && upper_bound_incl >= ver)) {
std::stringstream err;
err << "Trying to register schema with name " << op_name
<< " (domain: " << op_domain << " version: " << ver
<< ") from file " << op_schema.file() << " line "
<< op_schema.line() << ", but it its version is not "
<< "in the inclusive range [" << lower_bound_incl << ", "
<< upper_bound_incl << "] (usually, this means you "