-
Notifications
You must be signed in to change notification settings - Fork 0
/
version4.py
225 lines (186 loc) · 7.41 KB
/
version4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import torch
from torch.nn import functional as F
from torch import nn
#hyperparameters
batch_size = 64 # how many independent sequences will we process in parallel?
block_size = 256 # what is the maximum context length for predictions?
max_iters = 5000
eval_interval = 500
learning_rate = 3e-4
device = 'cuda' if torch.cuda.is_available() else 'cpu'
eval_iters = 200
n_embd = 384
n_head = 6
n_layer = 6
dropout = 0.2
# ------------
torch.manual_seed(1337)
with open('input.txt', 'r', encoding='utf-8') as f:
text = f.read()
# here are all the unique characters that occur in this text
chars = sorted(list(set(text)))
vocab_size = len(chars)
# create a mapping from characters to integers
stoi = { ch:i for i,ch in enumerate(chars) }
itos = { i:ch for i,ch in enumerate(chars) }
encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers
decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string
# Train and test splits
data = torch.tensor(encode(text), dtype=torch.long)
n = int(0.9*len(data)) # first 90% will be train, rest val
train_data = data[:n]
val_data = data[n:]
# data loading
def get_batch(split):
# generate a small batch of data of inputs x and targets y
data = train_data if split == 'train' else val_data
ix = torch.randint(len(data) - block_size, (batch_size,))
x = torch.stack([data[i:i+block_size] for i in ix])
y = torch.stack([data[i+1:i+block_size+1] for i in ix])
x, y = x.to(device), y.to(device)
return x, y
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ['train', 'val']:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch(split)
logits, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
class Head(nn.Module):
""" one head of self attention"""
def __init__(self,head_size):
super().__init__()
self.key = nn.Linear(n_embd,head_size,bias =False)
self.query = nn.Linear(n_embd,head_size,bias =False)
self.value = nn.Linear(n_embd,head_size,bias =False)
self.register_buffer('tril',torch.tril(torch.ones(block_size,block_size)))
self.dropout = nn.Dropout(dropout)
def forward(self,x):
# input of size(batch,time,channels)
#output of size(batch,time,head_size)
B,T,C = x.shape
k = self.key(x)
q = self.query(x)
#compute attention scores
wei = q @ k.transpose(-2,-1) * k.shape[-1]**-0.5 # to reduce variance
wei = wei.masked_fill(self.tril[:T,:T]==0,float('-inf'))
wei = F.softmax(wei,dim=-1)
wei = self.dropout(wei)
# perform weighted aggregation of values
v = self.value(x)
out = wei @ v
return out
class MultiHeadAttention(nn.Module):
"""multiple heads of self-attention in parallel"""
def __init__(self,num_heads,head_size):
super().__init__()
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
self.proj = nn.Linear(head_size*num_heads,n_embd)
self.dropout = nn.Dropout(dropout)
def forward(self,x):
out = torch.cat([h(x) for h in self.heads],dim=-1)
out = self.dropout(self.proj(out))
return out
class FeedForward(nn.Module):
""" a simple linear layer followed by non linearity"""
def __init__(self, n_embd):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embd, 4*n_embd),
#originally nn.ReLU
nn.ReLU(),
nn.Linear(4*n_embd, n_embd),
nn.Dropout(dropout)
)
def forward(self,x):
return self.net(x)
class Block(nn.Module):
""" Transformer block: communication followed by computation"""
def __init__(self,n_embd,n_head):
#n_embd : embedding dimension,n_head: number of heads we'd like
super().__init__()
head_size = n_embd // n_head
self.sa = MultiHeadAttention(n_head,head_size)
self.ffwd = FeedForward(n_embd)
self.ln1 = nn.LayerNorm(n_embd)
self.ln2 = nn.LayerNorm(n_embd)
def forward(self,x):
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
return x
class GPTLanguageModel(nn.Module):
def __init__(self):
super().__init__()
# each token directly reads off the logits for the next token in the lookup table
self.token_embedding_table= nn.Embedding(vocab_size,n_embd)
self.position_embedding_table = nn.Embedding(block_size, n_embd)
self.blocks = nn.Sequential(*[Block(n_embd,n_head=n_head) for _ in range(n_layer)])
self.ln_f = nn.LayerNorm(n_embd)
self.lm_head = nn.Linear(n_embd,vocab_size)
self.apply(self._init_weights)
def _init_weights(self,module):
if isinstance(module,nn.Linear):
torch.nn.init.normal_(module.weight,mean =0.0,std =0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module,nn.Embedding):
torch.nn.init.normal_(module.weight, mean= 0.0,std=0.02)
def forward(self,idx,targets = None):
B, T = idx.shape
#idx and targets are both (B,T) tensor of integers
tok_emb = self.token_embedding_table(idx)#B,T,C
pos_emb = self.position_embedding_table(torch.arange(T,device = device))
x = tok_emb + pos_emb #(B,T,C)
x = self.blocks(x)
x = self.ln_f(x)
logits = self.lm_head(x)
if targets is None:
loss = None
else:
B,T,C = logits.shape
logits = logits.view(B*T,C)
targets = targets.view(B*T)
loss = F.cross_entropy(logits,targets)
return logits,loss
def generate(self,idx,max_new_tokens):
#idx is (B,T) of integers
for _ in range(max_new_tokens):
#crop idx to the last block_size tokens
idx_cond = idx[:,-block_size:]
logits,loss = self(idx_cond)
#focus only on the last timestep
logits = logits[:,-1,:]
#apply softmax to get probabilities
probs = F.softmax(logits,dim=-1)
#sample from the distribution
idx_next = torch.multinomial(probs,num_samples=1)
#append sampled index to running sequence
idx = torch.cat((idx,idx_next),dim=1) #(B,T+1)
return idx
model = GPTLanguageModel()
m = model.to(device)
#print the number of parameters in the model
print(sum(p.numel() for p in m.parameters())/1e6,'M parameters')
optimizer = torch.optim.AdamW(model.parameters(),lr = learning_rate)
for iter in range(max_iters):
#every once in a while evaluate tje loss on train and val sets
if iter % eval_interval == 0 or iter ==max_iters-1:
losses = estimate_loss()
print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
#sample a batch of data
xb, yb = get_batch('train')
#evaluate the loss
logits, loss = model(xb, yb)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
#generate from the model
context = torch.zeros((1,1),dtype = torch.long,device = device)
print(decode(model.generate(context, max_new_tokens = 200)[0].tolist()))
open('lmao_Shakespeare.txt','w').write(decode(model.generate(context,max_new_tokens = 10000)[0].tolist()))