forked from HigherOrderCO/HVM
-
Notifications
You must be signed in to change notification settings - Fork 1
/
memory.rs
688 lines (628 loc) · 22.3 KB
/
memory.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
// HVM's memory model
// ------------------
//
// The runtime memory consists of just a vector of u64 pointers. That is:
//
// Mem ::= Vec<Ptr>
//
// A pointer has 3 parts:
//
// Ptr ::= 0xTAAAAAAABBBBBBBB
//
// Where:
//
// T : u4 is the pointer tag
// A : u28 is the 1st value
// B : u32 is the 2nd value
//
// There are 12 possible tags:
//
// Tag | Val | Meaning
// ----| --- | -------------------------------
// DP0 | 0 | a variable, bound to the 1st argument of a duplication
// DP1 | 1 | a variable, bound to the 2nd argument of a duplication
// VAR | 2 | a variable, bound to the one argument of a lambda
// ARG | 3 | an used argument of a lambda or duplication
// ERA | 4 | an erased argument of a lambda or duplication
// LAM | 5 | a lambda
// APP | 6 | an application
// SUP | 7 | a superposition
// CTR | 8 | a constructor
// FUN | 9 | a function
// OP2 | 10 | a numeric operation
// U60 | 11 | a 60-bit unsigned integer
// F60 | 12 | a 60-bit floating point
//
// The semantics of the 1st and 2nd values depend on the pointer tag.
//
// Tag | 1st ptr value | 2nd ptr value
// --- | ---------------------------- | ---------------------------------
// DP0 | the duplication label | points to the duplication node
// DP1 | the duplication label | points to the duplication node
// VAR | not used | points to the lambda node
// ARG | not used | points to the variable occurrence
// ERA | not used | not used
// LAM | not used | points to the lambda node
// APP | not used | points to the application node
// SUP | the duplication label | points to the superposition node
// CTR | the constructor name | points to the constructor node
// FUN | the function name | points to the function node
// OP2 | the operation name | points to the operation node
// U60 | the most significant 28 bits | the least significant 32 bits
// F60 | the most significant 28 bits | the least significant 32 bits
//
// Notes:
//
// 1. The duplication label is an internal value used on the DUP-SUP rule.
// 2. The operation name only uses 4 of the 28 bits, as there are only 16 ops.
// 3. U60 and F60 pointers don't point anywhere, they just store the number directly.
//
// A node is a tuple of N pointers stored on sequential memory indices.
// The meaning of each index depends on the node. There are 7 types:
//
// Duplication Node:
// - [0] => either an ERA or an ARG pointing to the 1st variable location
// - [1] => either an ERA or an ARG pointing to the 2nd variable location
// - [2] => pointer to the duplicated expression
//
// Lambda Node:
// - [0] => either and ERA or an ARG pointing to the variable location
// - [1] => pointer to the lambda's body
//
// Application Node:
// - [0] => pointer to the lambda
// - [1] => pointer to the argument
//
// Superposition Node:
// - [0] => pointer to the 1st superposed value
// - [1] => pointer to the 2sd superposed value
//
// Constructor Node:
// - [0] => pointer to the 1st field
// - [1] => pointer to the 2nd field
// - ... => ...
// - [N] => pointer to the Nth field
//
// Function Node:
// - [0] => pointer to the 1st argument
// - [1] => pointer to the 2nd argument
// - ... => ...
// - [N] => pointer to the Nth argument
//
// Operation Node:
// - [0] => pointer to the 1st operand
// - [1] => pointer to the 2nd operand
//
// Notes:
//
// 1. Duplication nodes DON'T have a body. They "float" on the global scope.
// 2. Lambdas and Duplications point to their variables, and vice-versa.
// 3. ARG pointers can only show up inside Lambdas and Duplications.
// 4. Nums and Vars don't require a node type, because they're unboxed.
// 5. Function and Constructor arities depends on the user-provided definition.
//
// Example 0:
//
// Core:
//
// {Tuple2 #7 #8}
//
// Memory:
//
// Root : Ptr(CTR, 0x0000001, 0x00000000)
// 0x00 | Ptr(U60, 0x0000000, 0x00000007) // the tuple's 1st field
// 0x01 | Ptr(U60, 0x0000000, 0x00000008) // the tuple's 2nd field
//
// Notes:
//
// 1. This is just a pair with two numbers.
// 2. The root pointer is not stored on memory.
// 3. The 'Tuple2' name was encoded as the ID 1.
// 4. Since nums are unboxed, a 2-tuple uses 2 memory slots, or 32 bytes.
//
// Example 1:
//
// Core:
//
// λ~ λb b
//
// Memory:
//
// Root : Ptr(LAM, 0x0000000, 0x00000000)
// 0x00 | Ptr(ERA, 0x0000000, 0x00000000) // 1st lambda's argument
// 0x01 | Ptr(LAM, 0x0000000, 0x00000002) // 1st lambda's body
// 0x02 | Ptr(ARG, 0x0000000, 0x00000003) // 2nd lambda's argument
// 0x03 | Ptr(VAR, 0x0000000, 0x00000002) // 2nd lambda's body
//
// Notes:
//
// 1. This is a λ-term that discards the 1st argument and returns the 2nd.
// 2. The 1st lambda's argument not used, thus, an ERA pointer.
// 3. The 2nd lambda's argument points to its variable, and vice-versa.
// 4. Each lambda uses 2 memory slots. This term uses 64 bytes in total.
//
// Example 2:
//
// Core:
//
// λx dup x0 x1 = x; (* x0 x1)
//
// Memory:
//
// Root : Ptr(LAM, 0x0000000, 0x00000000)
// 0x00 | Ptr(ARG, 0x0000000, 0x00000004) // the lambda's argument
// 0x01 | Ptr(OP2, 0x0000002, 0x00000005) // the lambda's body
// 0x02 | Ptr(ARG, 0x0000000, 0x00000005) // the duplication's 1st argument
// 0x03 | Ptr(ARG, 0x0000000, 0x00000006) // the duplication's 2nd argument
// 0x04 | Ptr(VAR, 0x0000000, 0x00000000) // the duplicated expression
// 0x05 | Ptr(DP0, 0xa31fb21, 0x00000002) // the operator's 1st operand
// 0x06 | Ptr(DP1, 0xa31fb21, 0x00000002) // the operator's 2st operand
//
// Notes:
//
// 1. This is a lambda function that squares a number.
// 2. Notice how every ARGs point to a VAR/DP0/DP1, that points back its source node.
// 3. DP1 does not point to its ARG. It points to the duplication node, which is at 0x02.
// 4. The lambda's body does not point to the dup node, but to the operator. Dup nodes float.
// 5. 0xa31fb21 is a globally unique random label assigned to the duplication node.
// 6. That duplication label is stored on the DP0/DP1 that point to the node, not on the node.
// 7. A lambda uses 2 memory slots, a duplication uses 3, an operator uses 2. Total: 112 bytes.
// 8. In-memory size is different to, and larger than, serialization size.
pub use crate::runtime::*;
use crossbeam::utils::{Backoff, CachePadded};
use std::sync::atomic::{AtomicI64, AtomicU64, AtomicU8, Ordering};
// Types
// -----
pub type Ptr = u64;
pub type AtomicPtr = AtomicU64;
pub type ArityMap = crate::runtime::data::u64_map::U64Map<u64>;
// Thread local data and stats
#[derive(Debug)]
pub struct LocalVars {
pub tid: usize,
pub used: AtomicI64, // number of used memory cells
pub next: AtomicU64, // next alloc index
pub amin: AtomicU64, // min alloc index
pub amax: AtomicU64, // max alloc index
pub dups: AtomicU64, // next dup label to be created
pub cost: AtomicU64, // total number of rewrite rules
}
// Global memory buffer
pub struct Heap {
pub tids: usize,
pub node: Box<[AtomicU64]>,
pub lock: Box<[AtomicU8]>,
pub lvar: Box<[CachePadded<LocalVars>]>,
pub vstk: Box<[VisitQueue]>,
pub aloc: Box<[Box<[AtomicU64]>]>,
pub vbuf: Box<[Box<[AtomicU64]>]>,
pub rbag: RedexBag,
}
// Pointer Constructors
// --------------------
pub const VAL: u64 = 1;
pub const EXT: u64 = 0x100000000;
pub const TAG: u64 = 0x1000000000000000;
pub const DP0: u64 = 0x0;
pub const DP1: u64 = 0x1;
pub const VAR: u64 = 0x2;
pub const ARG: u64 = 0x3;
pub const ERA: u64 = 0x4;
pub const LAM: u64 = 0x5;
pub const APP: u64 = 0x6;
pub const SUP: u64 = 0x7;
pub const CTR: u64 = 0x8;
pub const FUN: u64 = 0x9;
pub const OP2: u64 = 0xA;
pub const U60: u64 = 0xB;
pub const F60: u64 = 0xC;
pub const NIL: u64 = 0xF;
pub const ADD: u64 = 0x0;
pub const SUB: u64 = 0x1;
pub const MUL: u64 = 0x2;
pub const DIV: u64 = 0x3;
pub const MOD: u64 = 0x4;
pub const AND: u64 = 0x5;
pub const OR: u64 = 0x6;
pub const XOR: u64 = 0x7;
pub const SHL: u64 = 0x8;
pub const SHR: u64 = 0x9;
pub const LTN: u64 = 0xA;
pub const LTE: u64 = 0xB;
pub const EQL: u64 = 0xC;
pub const GTE: u64 = 0xD;
pub const GTN: u64 = 0xE;
pub const NEQ: u64 = 0xF;
// Pointer Constructors
// --------------------
pub fn Var(pos: u64) -> Ptr {
(VAR * TAG) | pos
}
pub fn Dp0(col: u64, pos: u64) -> Ptr {
(DP0 * TAG) | (col * EXT) | pos
}
pub fn Dp1(col: u64, pos: u64) -> Ptr {
(DP1 * TAG) | (col * EXT) | pos
}
pub fn Arg(pos: u64) -> Ptr {
(ARG * TAG) | pos
}
pub fn Era() -> Ptr {
ERA * TAG
}
pub fn Lam(pos: u64) -> Ptr {
(LAM * TAG) | pos
}
pub fn App(pos: u64) -> Ptr {
(APP * TAG) | pos
}
pub fn Sup(col: u64, pos: u64) -> Ptr {
(SUP * TAG) | (col * EXT) | pos
}
pub fn Op2(ope: u64, pos: u64) -> Ptr {
(OP2 * TAG) | (ope * EXT) | pos
}
pub fn U6O(val: u64) -> Ptr {
(U60 * TAG) | val
}
pub fn F6O(val: u64) -> Ptr {
(F60 * TAG) | val
}
pub fn Ctr(fun: u64, pos: u64) -> Ptr {
(CTR * TAG) | (fun * EXT) | pos
}
pub fn Fun(fun: u64, pos: u64) -> Ptr {
(FUN * TAG) | (fun * EXT) | pos
}
// Pointer Getters
// ---------------
pub fn get_tag(lnk: Ptr) -> u64 {
lnk / TAG
}
pub fn get_ext(lnk: Ptr) -> u64 {
(lnk / EXT) & 0xFFF_FFFF
}
pub fn get_val(lnk: Ptr) -> u64 {
lnk & 0xFFFF_FFFF
}
pub fn get_num(lnk: Ptr) -> u64 {
lnk & 0xFFF_FFFF_FFFF_FFFF
}
pub fn get_loc(lnk: Ptr, arg: u64) -> u64 {
get_val(lnk) + arg
}
pub fn get_cost(heap: &Heap) -> u64 {
heap.lvar.iter().map(|x| x.cost.load(Ordering::Relaxed)).sum()
}
pub fn get_used(heap: &Heap) -> i64 {
heap.lvar.iter().map(|x| x.used.load(Ordering::Relaxed)).sum()
}
pub fn inc_cost(heap: &Heap, tid: usize) {
unsafe { heap.lvar.get_unchecked(tid) }.cost.fetch_add(1, Ordering::Relaxed);
}
pub fn gen_dup(heap: &Heap, tid: usize) -> u64 {
return unsafe { heap.lvar.get_unchecked(tid) }.dups.fetch_add(1, Ordering::Relaxed) & 0xFFF_FFFF;
}
pub fn arity_of(arit: &ArityMap, lnk: Ptr) -> u64 {
return *arit.get(&get_ext(lnk)).unwrap_or(&0);
}
// Pointers
// --------
// Given a location, loads the ptr stored on it
pub fn load_ptr(heap: &Heap, loc: u64) -> Ptr {
unsafe { heap.node.get_unchecked(loc as usize).load(Ordering::Relaxed) }
}
// Moves a pointer to another location
pub fn move_ptr(heap: &Heap, old_loc: u64, new_loc: u64) -> Ptr {
link(heap, new_loc, take_ptr(heap, old_loc))
}
// Given a pointer to a node, loads its nth arg
pub fn load_arg(heap: &Heap, term: Ptr, arg: u64) -> Ptr {
load_ptr(heap, get_loc(term, arg))
}
// Given a location, takes the ptr stored on it
pub fn take_ptr(heap: &Heap, loc: u64) -> Ptr {
unsafe { heap.node.get_unchecked(loc as usize).swap(0, Ordering::Relaxed) }
}
// Given a pointer to a node, takes its nth arg
pub fn take_arg(heap: &Heap, term: Ptr, arg: u64) -> Ptr {
take_ptr(heap, get_loc(term, arg))
}
// Writes a ptr to memory. Updates binders.
pub fn link(heap: &Heap, loc: u64, ptr: Ptr) -> Ptr {
unsafe {
heap.node.get_unchecked(loc as usize).store(ptr, Ordering::Relaxed);
if get_tag(ptr) <= VAR {
let arg_loc = get_loc(ptr, get_tag(ptr) & 0x01);
heap.node.get_unchecked(arg_loc as usize).store(Arg(loc), Ordering::Relaxed);
}
}
ptr
}
// Heap Constructors
// -----------------
pub fn new_atomic_u8_array(size: usize) -> Box<[AtomicU8]> {
return unsafe {
Box::from_raw(AtomicU8::from_mut_slice(Box::leak(vec![0xFFu8; size].into_boxed_slice())))
};
}
pub fn new_atomic_u64_array(size: usize) -> Box<[AtomicU64]> {
return unsafe {
Box::from_raw(AtomicU64::from_mut_slice(Box::leak(vec![0u64; size].into_boxed_slice())))
};
}
pub fn new_tids(tids: usize) -> Box<[usize]> {
return (0..tids).collect::<Vec<usize>>().into_boxed_slice();
}
pub fn new_heap(size: usize, tids: usize) -> Heap {
let mut lvar = vec![];
for tid in 0..tids {
lvar.push(CachePadded::new(LocalVars {
tid: tid,
used: AtomicI64::new(0),
next: AtomicU64::new((size / tids * (tid + 0)) as u64),
amin: AtomicU64::new((size / tids * (tid + 0)) as u64),
amax: AtomicU64::new((size / tids * (tid + 1)) as u64),
dups: AtomicU64::new(((1 << 28) / tids * tid) as u64),
cost: AtomicU64::new(0),
}))
}
let node = new_atomic_u64_array(size);
let lock = new_atomic_u8_array(size);
let lvar = lvar.into_boxed_slice();
let rbag = RedexBag::new(tids);
let aloc = (0..tids)
.map(|x| new_atomic_u64_array(1 << 20))
.collect::<Vec<Box<[AtomicU64]>>>()
.into_boxed_slice();
let vbuf = (0..tids)
.map(|x| new_atomic_u64_array(1 << 16))
.collect::<Vec<Box<[AtomicU64]>>>()
.into_boxed_slice();
let vstk = (0..tids).map(|x| VisitQueue::new()).collect::<Vec<VisitQueue>>().into_boxed_slice();
return Heap { tids, node, lock, lvar, rbag, aloc, vbuf, vstk };
}
// Allocator
// ---------
pub fn alloc(heap: &Heap, tid: usize, arity: u64) -> u64 {
unsafe {
let lvar = &heap.lvar.get_unchecked(tid);
if arity == 0 {
0
} else {
let mut length = 0;
//let mut count = 0;
loop {
//count += 1;
//if tid == 9 && count > 5000000 {
//println!("[9] slow-alloc {} | {}", count, *lvar.next.as_ptr());
//}
// Loads value on cursor
let val = heap.node.get_unchecked(*lvar.next.as_ptr() as usize).load(Ordering::Relaxed);
// If it is empty, increment length
if val == 0 {
length += 1;
// Otherwise, reset length
} else {
length = 0;
};
// Moves cursor right
*lvar.next.as_ptr() += 1;
// If it is out of bounds, warp around
if *lvar.next.as_ptr() >= *lvar.amax.as_ptr() {
length = 0;
*lvar.next.as_ptr() = *lvar.amin.as_ptr();
}
// If length equals arity, allocate that space
if length == arity {
//println!("[{}] return", lvar.tid);
//println!("[{}] alloc {} at {}", lvar.tid, arity, lvar.next - length);
//lvar.used.fetch_add(arity as i64, Ordering::Relaxed);
//if tid == 9 && count > 50000 {
//println!("[{}] allocated {}! {}", 9, length, *lvar.next.as_ptr() - length);
//}
return *lvar.next.as_ptr() - length;
}
}
}
}
}
pub fn free(heap: &Heap, tid: usize, loc: u64, arity: u64) {
for i in 0..arity {
unsafe { heap.node.get_unchecked((loc + i) as usize) }.store(0, Ordering::Relaxed);
}
}
// Substitution
// ------------
// Atomically replaces a ptr by another. Updates binders.
pub fn atomic_relink(heap: &Heap, loc: u64, old: Ptr, neo: Ptr) -> Result<Ptr, Ptr> {
unsafe {
let got = heap.node.get_unchecked(loc as usize).compare_exchange_weak(
old,
neo,
Ordering::Relaxed,
Ordering::Relaxed,
)?;
if get_tag(neo) <= VAR {
let arg_loc = get_loc(neo, get_tag(neo) & 0x01);
heap.node.get_unchecked(arg_loc as usize).store(Arg(loc), Ordering::Relaxed);
}
return Ok(got);
}
}
// Performs a global [x <- val] substitution atomically.
pub fn atomic_subst(heap: &Heap, arit: &ArityMap, tid: usize, var: Ptr, val: Ptr) {
loop {
let arg_ptr = load_ptr(heap, get_loc(var, get_tag(var) & 0x01));
if get_tag(arg_ptr) == ARG {
if heap.tids == 1 {
link(heap, get_loc(arg_ptr, 0), val);
return;
} else {
if atomic_relink(heap, get_loc(arg_ptr, 0), var, val).is_ok() {
return;
} else {
continue;
}
}
}
if get_tag(arg_ptr) == ERA {
collect(heap, arit, tid, val); // safe, since `val` is owned by this thread
return;
}
}
}
// Locks
// -----
pub const LOCK_OPEN: u8 = 0xFF;
pub fn acquire_lock(heap: &Heap, tid: usize, term: Ptr) -> Result<u8, u8> {
let locker = unsafe { heap.lock.get_unchecked(get_loc(term, 0) as usize) };
locker.compare_exchange_weak(LOCK_OPEN, tid as u8, Ordering::Acquire, Ordering::Relaxed)
}
pub fn release_lock(heap: &Heap, tid: usize, term: Ptr) {
let locker = unsafe { heap.lock.get_unchecked(get_loc(term, 0) as usize) };
locker.store(LOCK_OPEN, Ordering::Release)
}
// Garbage Collection
// ------------------
// As soon as we detect an expression is unreachable, i.e., when it is applied to a lambda or
// function that doesn't use its argument, we call `collect()` on it. Since the expression is now
// implicitly "owned" by this thread, we're allowed to traverse the structure and fully free its
// memory. There are some complications, though: lambdas, duplications, and their respective
// variables. When a lam is collected, we must first substitute its bound variable by `Era()`, and
// then recurse. When a lam-bound variable is collected, we just link its argument to `Era()`. This
// will allow lams to be collected properly in all scenarios.
//
// A. When the lam is collected before the var. Ex: λx (Pair 42 x)
// 1. We substitute [x <- Era()] and recurse into the lam's body.
// 2. When we reach x, it will be Era(), so there is nothing to do.
// 3. All memory related to this lambda is freed.
// This is safe, because both are owned by this thread
//
// B. When the var is collected before the lam. Ex: (Pair x λx(42))
// 1. We reach x and link the lam's argument to Era().
// 2. When we reach the lam, its var will be Era(), so [Era() <- Era()] will do nothing.
// 3. All memory related to this lambda is freed.
// This is safe, because both are owned by this thread.
//
// C. When the var is collected, but the lam isn't. Ex: (Pair x 42)
// 1. We reach x and link the lam's argument to Era().
// 2. The owner of the lam can still use it, and applying it will trigger collect().
// This is safe, because the lam arg field is owned by the thread that owns the var (this one).
//
// D. When the lam is collected, but the var isn't. Ex: (Pair λx(42) 777)
// 1. We reach the lam and substitute [x <- Era()].
// 2. The owner of var will now have an Era(), rather than an unbound variable.
// This is safe because, subst is atomic.
//
// As for dup nodes, the same idea applies. When a dup-bound variable is collected, we just link
// its argument to Era(). The problem is, it is impossible to reach a dup node directly. Because
// of that, if two threads collected the same dup, we'd have a memory leak: the dup node wouldn't
// be freed, and the dup expression wouldn't be collected. As such, when we reach a dup-bound
// variable, we also visit the dup node. Visiting dup nodes doesn't imply ownership, since a dup
// node can be accessed through two different dup-bound variables. As such, we attempt to lock it.
// If we can't have the lock, that means another thread is handling that dup, so we let it decide
// what to do with it, and return. If we get the lock, then we now have ownership, so we check the
// other argument. If it is Era(), that means this dup node was collected twice, so, we clear it
// and collect its expression. Otherwise, we release the lock and let the owner of the other
// variable decide what to do with it in a future. This covers most cases, but the is still a
// problem: what if the other variable is contained inside the duplicated expression? For example,
// the normal form of `(λf λx (f (f x)) λf λx (f (f x)))` is:
//
// λf λx b0
// dup f0 f1 = f
// dup b0 b1 = (f0 (f1 {b1 x}))
//
// If we attempt to collect it with the algorithm above, we'll have:
//
// dup f0 f1 = ~
// dup ~ b1 = (f0 (f1 {b1 ~}))
//
// That's because, once we reached `b0`, we replaced its respective arg by `Era()`, then locked its
// dup node and checked the other arg, `b1`; since it isn't `Era()`, we released the lock and let
// the owner of `b1` decide what to do. But `b1` is contained inside the expression, so it has no
// owner anymore; it forms a cycle, and no other part of the program will access it! This will not
// be handled by HVM's automatic collector and will be left as a memory leak. Under normal
// circumstances, the leak is too minimal to be a problem. It could be eliminated by enabling an
// external garbage collector (which would rarely need to be triggered), or avoided altogether by
// not allowing inputs that can result in self-referential clones on the input language's type
// system. Sadly, it is an issue that exists, and, for the time being, I'm not aware of a good
// solution that maintains HVM philosophy of only including constant-time compute primitives.
pub fn collect(heap: &Heap, arit: &ArityMap, tid: usize, term: Ptr) {
let mut coll = Vec::new();
let mut next = term;
loop {
let term = next;
match get_tag(term) {
DP0 => {
link(heap, get_loc(term, 0), Era());
if acquire_lock(heap, tid, term).is_ok() {
if get_tag(load_arg(heap, term, 1)) == ERA {
coll.push(take_arg(heap, term, 2));
free(heap, tid, get_loc(term, 0), 3);
}
release_lock(heap, tid, term);
}
}
DP1 => {
link(heap, get_loc(term, 1), Era());
if acquire_lock(heap, tid, term).is_ok() {
if get_tag(load_arg(heap, term, 0)) == ERA {
coll.push(take_arg(heap, term, 2));
free(heap, tid, get_loc(term, 0), 3);
}
release_lock(heap, tid, term);
}
}
VAR => {
link(heap, get_loc(term, 0), Era());
}
LAM => {
atomic_subst(heap, arit, tid, Var(get_loc(term, 0)), Era());
next = take_arg(heap, term, 1);
free(heap, tid, get_loc(term, 0), 2);
continue;
}
APP => {
coll.push(take_arg(heap, term, 0));
next = take_arg(heap, term, 1);
free(heap, tid, get_loc(term, 0), 2);
continue;
}
SUP => {
coll.push(take_arg(heap, term, 0));
next = take_arg(heap, term, 1);
free(heap, tid, get_loc(term, 0), 2);
continue;
}
OP2 => {
coll.push(take_arg(heap, term, 0));
next = take_arg(heap, term, 1);
free(heap, tid, get_loc(term, 0), 2);
continue;
}
U60 => {}
F60 => {}
CTR | FUN => {
let arity = arity_of(arit, term);
for i in 0..arity {
if i < arity - 1 {
coll.push(take_arg(heap, term, i));
} else {
next = take_arg(heap, term, i);
}
}
free(heap, tid, get_loc(term, 0), arity);
if arity > 0 {
continue;
}
}
_ => {}
}
if let Some(got) = coll.pop() {
next = got;
} else {
break;
}
}
}