-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
132 lines (118 loc) · 4.97 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
import numpy as np
from addition import Adder
from eliminator import Eliminator
import neural_network
# tries to load the arrays necessary to train the neural network and
# creates them if they don't exist
try:
bac_array = np.load("bac_array.npy")
bac_array = bac_array.tolist()
user_input_array = np.load("user_input_array.npy")
user_input_array = user_input_array.tolist()
print("arrays loaded")
except:
bac_array = []
user_input_array = []
print("arrays created")
name = input("Do you want to start a new drinking session? Y/N \n")
# collects basic user data such as current weight, height and age
if name == "Y":
try:
os.remove("drinking_session.npy")
except:
None
user_info = []
temp = []
temp.append(float(input("How tall are you? (in cm) \n")))
temp.append(float(input("How much do you weight? (in kg) \n")))
temp.append(float(input("How old are you? \n")))
hunger = float(input("How satiated are you on a scale from 0-10? \n"))
absorption_halftime = (((hunger - 0) * 12) / 10) + 6
time = input("What is the time that you started drinking? (enter in hh:mm format) \n")
hour = int((time[0] + time[1]))
minute = int((time[3] + time[4]))
minute += hour * 60
temp.append(minute)
limit = input('Do you want to set a costume limit? (Y/N) \n')
if limit == 'Y':
limit = float(input('What is the max BAC you want to achieve? \n'))
else:
limit = -1
temp.append(limit)
temp.append(absorption_halftime)
user_info.append(temp)
np.save("drinking_session.npy", user_info)
# processes and saves the data
elif name == "N":
user_info = np.load("drinking_session.npy")
user_info = user_info.tolist()
a = Adder(user_info[0][0], user_info[0][1], user_info[0][3])
limit = user_info[0][4]
hunger = user_info[0][5]
temp = []
decision = int(input("choose an option: 1. to add a drink 2. to say that you are sober 3. to preview how a drink will affect your BAC \n"))
# allows user to add a new drink
if decision == 1:
# temp.append(int(input("How full are you?")))
# gets users time input and converts it into minutes
time = input("What time is it? (enter in hh:mm format) \n")
hour = int((time[0] + time[1]))
minute = int((time[3] + time[4]))
minute += hour * 60
temp.append(minute)
# gets alcohol intake and values on how drunk the user feels
# in order to calculate bac and feed neural net
how_drunk = float(input("How drunk do you feel? \n"))
temp.append(how_drunk)
temp.append(float(input("How much % alcohol did your drink have? \n")))
temp.append(float(input("How much ml of you drink did you have? \n")))
user_info.append(temp)
a.array(temp[3], temp[2], temp[0], hunger)
a.plot()
e = Eliminator(user_info[0][3])
e.elimination()
e.plot()
elimination_array = np.load("eliminated_array.npy")
elim_time = np.array(elimination_array[minute], ndmin=2)
bac_array.append(elimination_array[minute])
# trains neural network every 5 inputs and lets it predict the drunkeness
user_input_array.append(how_drunk)
if len(bac_array) % 5 == 0:
neural_network.learn(bac_array, user_input_array)
if len(bac_array) == 1:
neural_network.learn(bac_array, user_input_array)
prediction = neural_network.predict(elim_time)
print(prediction)
np.save("drinking_session.npy", user_info)
# informs the elimination rate adjuster on how the elimination rate will have to be adjusted
elif decision == 2:
sober_time = 0
min = int(input("How many minutes ago did you sober up? \n"))
sober_time = minute - min
e.adjustment(sober_time)
elif decision == 3:
time = input("What time is it? (enter in hh:mm format) \n")
hour = int((time[0] + time[1]))
minute = int((time[3] + time[4]))
minute += hour * 60
temp.append(minute)
temp.append(float(input("How much % alcohol did your drink have? \n")))
temp.append(float(input("How much ml of you drink did you have? \n")))
user_info.append(temp)
a.array(temp[2], temp[1], temp[0], hunger)
a.plot()
e = Eliminator(user_info[0][3])
e.elimination()
e.plot()
added_drinks = np.load("added_drinks.npy")
added_drinks = np.delete(added_drinks, -1)
np.save("added_drinks.npy", added_drinks)
elimination_array = np.load("eliminated_array.npy")
elim_time = np.array(elimination_array[minute], ndmin=2)
prediction = neural_network.predict(elim_time)
print(prediction)
np.save("bac_array", bac_array)
np.save("user_input_array", user_input_array)
else:
print("Sorry, this is an invalid input")