(对应代码:5-2tensorboard网络结构.py
)
# coding: utf-8
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# 载入数据集
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
# 每个批次的大小
batch_size = 100
# 计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size
# 命名空间
with tf.name_scope('input'):
# 定义两个placeholder
x = tf.placeholder(tf.float32, [None, 784], name='x-input')
y = tf.placeholder(tf.float32, [None, 10], name='y-input')
with tf.name_scope('layer'):
# 创建一个简单的神经网络
with tf.name_scope('wights'):
W = tf.Variable(tf.zeros([784, 10]), name='W')
with tf.name_scope('biases'):
b = tf.Variable(tf.zeros([10]), name='b')
with tf.name_scope('wx_plus_b'):
wx_plus_b = tf.matmul(x, W) + b
with tf.name_scope('softmax'):
prediction = tf.nn.softmax(wx_plus_b)
# 二次代价函数
# loss = tf.reduce_mean(tf.square(y-prediction))
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=prediction))
with tf.name_scope('train'):
# 使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
# 初始化变量
init = tf.global_variables_initializer()
with tf.name_scope('accuracy'):
with tf.name_scope('correct_prediction'):
# 结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(prediction, 1)) # argmax返回一维张量中最大的值所在的位置
with tf.name_scope('accuracy'):
# 求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
with tf.Session() as sess:
sess.run(init)
writer = tf.summary.FileWriter('logs/', sess.graph)
for epoch in range(1):
for batch in range(n_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys})
acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels})
print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))
通过使用 with tf.name_scope('input')
来设置命名空间标记可视化参数,程序运行之后将在当前目录生成一个 logs 目录,目录下有如下内容:
然后 cmd 下运行下面这个命令:tensorboard --logdir=D:\Tensorflow\logs
打开浏览器,输入http://Jaybo-pc:6006
,可以看到:
然后可以点击观察里面的一些细节:
(对应代码:5-3tensorboard网络运行.py
)
# coding: utf-8
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# 载入数据集
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
# 每个批次的大小
batch_size = 100
# 计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size
# 参数概要
def variable_summaries(var):
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean', mean) # 平均值
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev', stddev) # 标准差
tf.summary.scalar('max', tf.reduce_max(var)) # 最大值
tf.summary.scalar('min', tf.reduce_min(var)) # 最小值
tf.summary.histogram('histogram', var) # 直方图
# 命名空间
with tf.name_scope('input'):
# 定义两个placeholder
x = tf.placeholder(tf.float32, [None, 784], name='x-input')
y = tf.placeholder(tf.float32, [None, 10], name='y-input')
with tf.name_scope('layer'):
# 创建一个简单的神经网络
with tf.name_scope('wights'):
W = tf.Variable(tf.zeros([784, 10]), name='W')
variable_summaries(W)
with tf.name_scope('biases'):
b = tf.Variable(tf.zeros([10]), name='b')
variable_summaries(b)
with tf.name_scope('wx_plus_b'):
wx_plus_b = tf.matmul(x, W) + b
with tf.name_scope('softmax'):
prediction = tf.nn.softmax(wx_plus_b)
# 二次代价函数
# loss = tf.reduce_mean(tf.square(y-prediction))
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=prediction))
tf.summary.scalar('loss', loss)
with tf.name_scope('train'):
# 使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
# 初始化变量
init = tf.global_variables_initializer()
with tf.name_scope('accuracy'):
with tf.name_scope('correct_prediction'):
# 结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(prediction, 1)) # argmax返回一维张量中最大的值所在的位置
with tf.name_scope('accuracy'):
# 求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar('accuracy', accuracy)
# 合并所有的summary
merged = tf.summary.merge_all()
with tf.Session() as sess:
sess.run(init)
writer = tf.summary.FileWriter('logs/', sess.graph)
for epoch in range(51):
for batch in range(n_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
summary, _ = sess.run([merged, train_step], feed_dict={x: batch_xs, y: batch_ys})
writer.add_summary(summary, epoch)
acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels})
print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))
Tensorboard 内容大致如下:
关于使用可视化工具 TensorBoard 的更多的学习和实践:Tensorflow的可视化工具Tensorboard的初步使用
TensorBoard 可以记录与展示以下数据形式:
(1)标量 Scalars
(2)图片 Images
(3)音频 Audio
(4)计算图 Graph
(5)数据分布 Distribution
(6)直方图 Histograms
(7)嵌入向量 Embeddings
Tensorboard 的可视化过程:
(1)首先肯定是先建立一个 graph,你想从这个 graph 中获取某些数据的信息
(2)确定要在 graph 中的哪些节点放置 summary operations 以记录信息
- 使用
tf.summary.scalar
记录标量 - 使用
tf.summary.histogram
记录数据的直方图 - 使用
tf.summary.distribution
记录数据的分布图 - 使用
tf.summary.image
记录图像数据 - ….
(3)operations 并不会去真的执行计算,除非你告诉他们需要去 run,或者它被其他的需要 run 的 operation 所依赖。而我们上一步创建的这些 summary operations 其实并不被其他节点依赖,因此,我们需要特地去运行所有的 summary 节点。但是呢,一份程序下来可能有超多这样的 summary 节点,要手动一个一个去启动自然是及其繁琐的,因此我们可以使用 tf.summary.merge_all
去将所有 summary 节点合并成一个节点,只要运行这个节点,就能产生所有我们之前设置的 summary data。
(4)使用tf.summary.FileWriter
将运行后输出的数据都保存到本地磁盘中
(5)运行整个程序,并在命令行输入运行 tensorboard 的指令,之后打开 web 端可查看可视化的结果。
再看下该文:tensorboard快速上手,tensorboard可视化普及贴(代码基于tensorflow1.2以上)
总的来说就是除了可视化模型的 Graph,如果我们需要流图训练过程中动态日志 log,比如现在还没有动态scalars(标量值)数据,所以我们可以定义一些 log summary 的操作(下面是对 cost 和 accuracy 标量打 log):
tf.summary.scalar("cost", cross_entropy)
tf.summary.scalar("accuracy", accuracy)
定义完成后,我们不需要逐条执行上述操作,只需用 merge 操作一并执行:
summary_op = tf.summary.merge_all()
最后在流图真正流动训练的时候,记得执行,并写入上述操作到 log 中:
_, summary = sess.run([train_op, summary_op], feed_dict={x: batch_x, y_: batch_y})
# write log
writer.add_summary(summary, epoch * batch_count+i)
其中,add_summary()
方法的 第二个参数是 scalar 图标坐标中的 x 轴的值,summary 对象 计算出的标量是 y 轴的值,如图:
关于图中 Smoothing 顺带提下,它的大小是指什么意思呢?参看该文:tensorboard 界面smooth参数实现
其实就是指的作图时曲线的平滑程度。调整 Smoothing 参数,控制曲线平滑处理,数值越小越接近实际值,波动大;数值越大曲线越平缓。如果不平滑处理的话,有些曲线波动很大,难以看出趋势。0 就是不平滑处理,1 就是最平滑。例如:
当smooth = 0
时:
当smooth = 0.5
时:
当smooth = 0.9
时:
下面进行手写数字识别 Embeding(官网链接)可视化过程:(对应代码:5-4tensorboard可视化.py
)
先把 Embeding 文件mnist_10k_sprite.png
粘贴到如上 data 文件夹下。
# coding: utf-8
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.contrib.tensorboard.plugins import projector
# 载入mnist数据集
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# 运行次数
max_steps = 1001
# 图片数量
image_num = 3000
# 文件路径
#DIR = "D:\\TensorFlow" # 路径这样写也可以
DIR = "D:/Tensorflow/"
# 定义会话
sess = tf.Session()
# 载入图片
embedding = tf.Variable(tf.stack(mnist.test.images[:image_num]), trainable=False, name='embedding')
# 参数概要
def variable_summaries(var):
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean', mean) # 平均值
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev', stddev) # 标准差
tf.summary.scalar('max', tf.reduce_max(var)) # 最大值
tf.summary.scalar('min', tf.reduce_min(var)) # 最小值
tf.summary.histogram('histogram', var) # 直方图
# 命名空间
with tf.name_scope('input'):
# 这里的none表示第一个维度可以是任意的长度
x = tf.placeholder(tf.float32, [None, 784], name='x-input')
# 正确的标签
y = tf.placeholder(tf.float32, [None, 10], name='y-input')
# 显示图片
with tf.name_scope('input_reshape'):
image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
tf.summary.image('input', image_shaped_input, 10)
with tf.name_scope('layer'):
# 创建一个简单神经网络
with tf.name_scope('weights'):
W = tf.Variable(tf.zeros([784, 10]), name='W')
variable_summaries(W)
with tf.name_scope('biases'):
b = tf.Variable(tf.zeros([10]), name='b')
variable_summaries(b)
with tf.name_scope('wx_plus_b'):
wx_plus_b = tf.matmul(x, W) + b
with tf.name_scope('softmax'):
prediction = tf.nn.softmax(wx_plus_b)
with tf.name_scope('loss'):
# 交叉熵代价函数
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=prediction))
tf.summary.scalar('loss', loss)
with tf.name_scope('train'):
# 使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
# 初始化变量
sess.run(tf.global_variables_initializer())
with tf.name_scope('accuracy'):
with tf.name_scope('correct_prediction'):
# 结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(prediction, 1)) # argmax返回一维张量中最大的值所在的位置
with tf.name_scope('accuracy'):
# 求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 把correct_prediction变为float32类型
tf.summary.scalar('accuracy', accuracy)
# 产生metadata文件
if tf.gfile.Exists(DIR + 'projector/projector/metadata.tsv'):
tf.gfile.DeleteRecursively(DIR + 'projector/projector/metadata.tsv')
with open(DIR + 'projector/projector/metadata.tsv', 'w') as f:
labels = sess.run(tf.argmax(mnist.test.labels[:], 1))
for i in range(image_num):
f.write(str(labels[i]) + '\n')
# 合并所有的summary
merged = tf.summary.merge_all()
projector_writer = tf.summary.FileWriter(DIR + 'projector/projector', sess.graph)
saver = tf.train.Saver()
config = projector.ProjectorConfig()
embed = config.embeddings.add()
embed.tensor_name = embedding.name
embed.metadata_path = DIR + 'projector/projector/metadata.tsv'
embed.sprite.image_path = DIR + 'projector/data/mnist_10k_sprite.png'
embed.sprite.single_image_dim.extend([28, 28])
projector.visualize_embeddings(projector_writer, config)
for i in range(max_steps):
# 每个批次100个样本
batch_xs, batch_ys = mnist.train.next_batch(100)
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
summary, _ = sess.run([merged, train_step], feed_dict={x: batch_xs, y: batch_ys}, options=run_options,
run_metadata=run_metadata)
projector_writer.add_run_metadata(run_metadata, 'step%03d' % i)
projector_writer.add_summary(summary, i)
if i % 100 == 0:
acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels})
print("Iter " + str(i) + ", Testing Accuracy= " + str(acc))
saver.save(sess, DIR + 'projector/projector/a_model.ckpt', global_step=max_steps)
projector_writer.close()
sess.close()
运行结果:
Extracting MNIST_data\train-images-idx3-ubyte.gz
Extracting MNIST_data\train-labels-idx1-ubyte.gz
Extracting MNIST_data\t10k-images-idx3-ubyte.gz
Extracting MNIST_data\t10k-labels-idx1-ubyte.gz
Iter 0, Testing Accuracy= 0.2994
Iter 100, Testing Accuracy= 0.8024
Iter 200, Testing Accuracy= 0.8202
Iter 300, Testing Accuracy= 0.8305
Iter 400, Testing Accuracy= 0.8321
Iter 500, Testing Accuracy= 0.8688
Iter 600, Testing Accuracy= 0.8893
Iter 700, Testing Accuracy= 0.8994
Iter 800, Testing Accuracy= 0.9012
Iter 900, Testing Accuracy= 0.904
Iter 1000, Testing Accuracy= 0.9054
程序运行完毕,最后会在D:\TensorFlow\projector\projector
文件夹下生成如下文件:
然后 cmd 下运行:tensorboard --logdir=D:\TensorFlow\projector\projector