-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlosses.py
193 lines (167 loc) · 7.02 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import torch
from torchvision import models
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
class AdverserialModel(nn.Module):
def __init__(this, high_res):
super().__init__()
this.model = nn.Sequential(
nn.Conv2d(3, 16, 3,padding=1), # 3*3*3*16 = 432
nn.BatchNorm2d(16),
nn.LeakyReLU(0.2, inplace=True), # 256
nn.Conv2d(16, 32, 3,padding=1,stride=2), # 2
nn.BatchNorm2d(32),
nn.LeakyReLU(0.2, inplace=True), # 256
nn.Conv2d(32, 64, 3,padding=1), # 18 432
nn.BatchNorm2d(64),
nn.LeakyReLU(0.2, inplace=True), # 128
nn.Conv2d(64, 128, 3,padding=1, stride=2), # 73 728
nn.BatchNorm2d(128),
nn.LeakyReLU(0.2, inplace=True), # 64
nn.Conv2d(128, 256, 3,padding=1, stride=2), #
nn.BatchNorm2d(256),
nn.LeakyReLU(0.2, inplace=True), # 32
nn.Conv2d(256, 512, 3,padding=1, stride=2), #
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True), # 16
nn.Conv2d(512, 1024, 3,padding=1, stride=2), #
nn.BatchNorm2d(1024),
nn.LeakyReLU(0.2, inplace=True), # 8
nn.Conv2d(1024, 2048, 3,padding=1, stride=2), #
nn.BatchNorm2d(2048),
nn.LeakyReLU(0.2, inplace=True), # 4
nn.AdaptiveAvgPool2d(2),
nn.Flatten(),
nn.Linear(2048 * 2**2, 128),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(128, 1)
)
def forward(this, x):
return this.model(x)
class VGG(nn.Module):
"""VGG/Perceptual Loss
Parameters
----------
conv_index : str
Convolutional layer in VGG model to use as perceptual output
"""
def __init__(self, conv_index: str = '22'):
super(VGG, self).__init__()
vgg_features = models.vgg19(pretrained=True).features
modules = [m for m in vgg_features]
if conv_index == '22':
self.vgg = nn.Sequential(*modules[:8])
elif conv_index == '54':
self.vgg = nn.Sequential(*modules[:35])
vgg_mean = (0.485, 0.456, 0.406)
vgg_std = (0.229, 0.224, 0.225)
#self.sub_mean = common.MeanShift(rgb_range, vgg_mean, vgg_std)
self.vgg.requires_grad = False
for param in self.parameters():
param.requires_grad = False
def calcLoss(self, sr: torch.Tensor, hr: torch.Tensor) -> torch.Tensor:
"""Compute VGG/Perceptual loss between Super-Resolved and High-Resolution
Parameters
----------
sr : torch.Tensor
Super-Resolved model output tensor
hr : torch.Tensor
High-Resolution image tensor
Returns
-------
loss : torch.Tensor
Perceptual VGG loss between sr and hr
"""
def _forward(x):
#x = self.sub_mean(x)
x = self.vgg(x)
return x
vgg_sr = _forward(sr)
with torch.no_grad():
vgg_hr = _forward(hr.detach())
loss = F.l1_loss(vgg_sr, vgg_hr)
return loss
def perceptual_loss(real, fake, vgg):
"""Normalizes y and y_hat, runs them through vgg and compares intermediate layers and returns the perceptual loss"""
mean = torch.tensor([0.485, 0.456, 0.406])
std = torch.tensor([0.229, 0.224, 0.225]) # the biggest value that can be normalized to is 2.64
normalize = transforms.Normalize(mean.tolist(), std.tolist())
unnormalize = transforms.Normalize((-mean / std).tolist(), (1.0 / std).tolist())
loss = vgg.calcLoss(normalize(fake), normalize(real))
return loss
def sobel_filter(y, device):
kernel_x = torch.tensor([[1, 0, -1],[2,0,-2],[1,0,-1]]).view(1,1,3,3).expand(3,-1,-1,-1).float().to(device)
kernel_y = torch.tensor([[1, 2, 1],[0,0,0],[-1,-2,-1]]).view(1,1,3,3).expand(3,-1,-1,-1).float().to(device)
Gx = F.conv2d(y, kernel_x, groups=y.shape[1])
Gy = F.conv2d(y, kernel_y, groups=y.shape[1])
return (Gx**2 + Gy**2 + 1e-8).sqrt()
def psnr(real, fake):
return -10*torch.log10(F.mse_loss(real, fake))
# Copyright (c) 2013 Anders Hast
# Uppsala University
# http://www.cb.uu.se/~aht
#
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# The Software is provided "as is", without warranty of any kind.
#
def kernel(spline):
if spline == 'Cubic':
#B = [-1,1,-1,1;0,0,0,1;1,1,1,1;8,4,2,1];
#M = inv(B);
M = torch.tensor([[-1,3,-3,1], [3,-6,3,0], [-2,-3,6,-1], [0,6,0,0]])*1/6
u = torch.tensor([[0.125], [0.25], [0.5], [1]])
up = torch.tensor([0.75,1,1,0]).view(-1, 1)
upp= torch.tensor([3,2,0,0]).view(-1, 1)
elif spline == 'Catmull-Rom': #
M = torch.tensor([[-1,3,-3,1], [2,-5,4,-1], [-1,0,1,0], [0,2,0,0]])*0.5
u = torch.tensor([0.125, 0.25, 0.5, 1]).view(-1, 1)
up = torch.tensor([0.75,1,1,0]).view(-1, 1)
upp= torch.tensor([3, 2, 0, 0]).view(-1, 1)
elif spline == 'Trigonometric':
M = [[1,1,0,1], [1,torch.sqrt(3/4),0.5,0.5], [1,0.5,torch.sqrt(3/4),-0.5], [1,0,1,-1]]
M = torch.inverse(M)
u = [1,torch.sqrt(1/2),torch.sqrt(1/2),0].view(-1, 1)
up = [0,-torch.sqrt(1/2),torch.sqrt(1/2),-2].view(-1, 1)
upp= [0,-torch.sqrt(1/2),-torch.sqrt(1/2),0].view(-1, 1)
else:
raise ValueError('Spline unknown!')
""" elif spline == 'Bezier':
M=[1,0,0,0;-3,3,0,0;3, -6,3,0; -1,3,-3,1]';
u = [0.125;0.25;0.5;1];
up = [0.75;1;1;0];
upp= [3;2;0;0];
elif spline == 'B-Spline':
M=[-1,3,-3,1;3,-6,3,0;-3,0,3,0;1,4,1,0]*1/6;
u = [0.125;0.25;0.5;1];
up = [0.75;1;1;0];
upp= [3;2;0;0]; """
k = torch.mm(u.T, M)
d = torch.mm(up.T, M)
d2 = torch.mm(upp.T, M)
return (k, d, d2)
def superHast(y, device):
# Trigonometric
dk = torch.tensor([-0.006127921758831, 0.196582449765983, -1.328234947353380, -0.000000000000001, 1.328234947353381, -0.196582449765985, 0.006127921758831]).view(1, -1)
kk = torch.tensor([0.004333095030250, -0.074492438854197, 0.245666904969751, 0.648984877708396, 0.245666904969750, -0.074492438854198, 0.004333095030250]).view(1, -1)
a = torch.matmul(dk.T, kk).view(1,1,7,7).expand(3,-1,-1,-1).float().to(device)
b = torch.matmul(kk.T, dk).view(1,1,7,7).expand(3,-1,-1,-1).float().to(device)
Hx = F.conv2d(y, a, groups=y.shape[1])
Hy = F.conv2d(y, b, groups=y.shape[1])
return (Hx**2 + Hy**2 + 1e-12).sqrt()
def catmullHast(y, device):
# Catmull-Rom
dk = torch.tensor([-0.0078125, 0.15625, -0.7890625, 0, 0.7890625, -0.15625, 0.0078125]).view(1, -1)
kk = torch.tensor([0.00390625, -0.0703125, 0.24609375, 0.640625, 0.24609375, -0.0703125, 0.00390625]).view(1, -1)
a = torch.matmul(dk.T, kk).view(1,1,7,7).expand(3,-1,-1,-1).float().to(device)
b = torch.matmul(kk.T, dk).view(1,1,7,7).expand(3,-1,-1,-1).float().to(device)
Hx = F.conv2d(y, a, groups=y.shape[1])
Hy = F.conv2d(y, b, groups=y.shape[1])
return (Hx**2 + Hy**2 + 1e-12).sqrt()