-
Notifications
You must be signed in to change notification settings - Fork 18
/
models.py
371 lines (298 loc) · 14.8 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import json
import os
import sys
import re
import csv
import time
from config import Config
from ibm_watson import SpeechToTextV1
from ibm_cloud_sdk_core.authenticators import IAMAuthenticator
from ibm_watson import IAMTokenManager
from ibm_cloud_sdk_core.authenticators import BearerTokenAuthenticator
from ibm_watson.speech_to_text_v1 import CustomWord
from argparse import ArgumentParser
import os.path
from os import path
#For information to user. stdout is preserved for command status (could be redirected to file and parsed), stderr tracks ongoing progress
def eprint(msg:str):
print(msg, file=sys.stderr)
class ModelTool:
def __init__(self, config, ARGS):
self.config = config
self.STT = self.createSTT()
self.ARGS = ARGS
def createSTT(self):
apikey = self.config.getValue("SpeechToText", "apikey")
url = self.config.getValue("SpeechToText", "service_url")
use_bearer_token = self.config.getBoolean("SpeechToText", "use_bearer_token")
if use_bearer_token != True:
authenticator = IAMAuthenticator(apikey)
else:
iam_token_manager = IAMTokenManager(apikey=apikey)
bearerToken = iam_token_manager.get_token()
authenticator = BearerTokenAuthenticator(bearerToken)
speech_to_text = SpeechToTextV1(authenticator=authenticator)
speech_to_text.set_service_url(url)
speech_to_text.set_default_headers({'x-watson-learning-opt-out': "true"})
return speech_to_text
def execute(self):
# eprint(f"operation: {self.ARGS.operation}\n"
# +f"type: {self.ARGS.type}\n"
# +f"name: {self.ARGS.name}\n"
# +f"description: {self.ARGS.description}\n"
# +f"file: {self.ARGS.file}\n"
# )
# Registration of all the methods we support.
# First key is type, second key is type
# By genericizing the invocation, we can use common response handling below.
type_handlers = {}
type_handlers['base_model' ] = self.get_type_base_model_handlers
type_handlers['custom_model'] = self.get_type_custom_model_handlers
type_handlers['corpus' ] = self.get_type_corpus_handlers
type_handlers['word' ] = self.get_type_word_handlers
type_handlers['grammar' ] = self.get_type_grammar_handlers
if self.ARGS.type in type_handlers:
type_handler = type_handlers[self.ARGS.type]()
if self.ARGS.operation in type_handler:
eprint(f"Executing operation: {self.ARGS.operation} on type: {self.ARGS.type}")
response = type_handler[self.ARGS.operation]()
if response is not None:
#Could do global handling of HTTP status code, etc
#eprint(response.get_status_code())
eprint(json.dumps(response.get_result(), indent=2))
else:
eprint(f"Error executing operation: {self.ARGS.operation} on type: {self.ARGS.type}")
else:
eprint(f"Unsupported operation: {self.ARGS.operation} on type: {self.ARGS.type}")
else:
eprint(f"Unsupported type: {self.ARGS.type}")
# Most methods rely on the customization ID, we can abstract the config file from those methods
def get_customization_id(self):
return self.config.getValue("SpeechToText", "language_model_id")
def wait_until(self, status, action):
"""Wait until the model is in the given state, such as 'ready' or 'available'
(it might still need to finalize an operation such adding a corpus file or training)
"""
while True:
resp = self.STT.get_language_model(self.get_customization_id())
if resp.status_code != 200:
return False
if resp.result['status'] == status:
break
elif resp.result['status'] == 'failed':
break
else:
eprint(action + " in progress. Please wait...")
time.sleep(5.0)
'''
Base model functions
'''
def get_type_base_model_handlers(self):
handlers = {}
handlers['list'] = self.STT.list_models
handlers['get'] = self.get_base_model
return handlers
def get_base_model(self):
name = self.config.getValue("SpeechToText", "base_model_name")
if ARGS.name is not None:
name = ARGS.name
return self.STT.get_model(name)
'''
Custom model functions
'''
def get_type_custom_model_handlers(self):
handlers = {}
handlers['list' ] = self.STT.list_language_models
handlers['create'] = self.create_custom_model
handlers['get' ] = self.get_custom_model
handlers['delete'] = self.delete_custom_model
# Update intentionally mapped to STT 'train' to reduce operation count.
# Thus the SDK's 'add' is our 'create' and SDK's 'train' is our update. This matches my mental model of speech customization.
handlers['update'] = self.train_custom_model
handlers['reset'] = self.reset_custom_model
return handlers
def get_custom_model(self):
return self.STT.get_language_model(self.get_customization_id())
def create_custom_model(self):
base_model_name = self.config.getValue("SpeechToText", "base_model_name")
model_name = self.ARGS.name
if self.ARGS.name is None:
eprint("ERROR: Must pass a 'name' for the model")
return None
#Parameter 'dialect' is not included in this tool
response = self.STT.create_language_model(model_name, base_model_name, description=self.ARGS.description)
if response is not None and 'customization_id' in response.get_result():
#Fetch new customization id, to store it back into a new config file
customization_id = response.get_result()['customization_id']
self.config.setValue("SpeechToText", "language_model_id", customization_id)
#Sanitization could be improved a bit more, see https://stackoverflow.com/questions/295135/turn-a-string-into-a-valid-filename
sanitized_model_name = re.sub('[ /.]','_', model_name)
new_config_file_name = f"config.ini.{sanitized_model_name}"
eprint(f"Writing new configuration to {new_config_file_name} which contains customization id {customization_id}")
self.config.writeFile(new_config_file_name)
return response
def delete_custom_model(self):
return self.STT.delete_language_model(self.get_customization_id())
def train_custom_model(self):
resp = self.STT.train_language_model(self.get_customization_id())
self.wait_until('available', "Training")
eprint("Training complete. Custom model is ready to use.")
return resp
def reset_custom_model(self):
return self.STT.reset_language_model(self.get_customization_id())
def upgrade_custom_model(self):
resp = self.STT.upgrade_language_model(self.get_customization_id())
self.wait_until('available', "Upgrading")
eprint("Upgrade complete.")
return resp
'''
Corpus functions
'''
def get_type_corpus_handlers(self):
handlers = {}
handlers['list' ] = self.list_corpora
handlers['get' ] = self.get_corpus
handlers['create'] = self.add_corpus
handlers['update'] = self.update_corpus
handlers['delete'] = self.delete_corpus
return handlers
def list_corpora(self):
return self.STT.list_corpora(self.get_customization_id())
def add_corpus(self):
return self.do_write_corpus(update=False)
def update_corpus(self):
return self.do_write_corpus(update=True)
def do_write_corpus(self, update:bool):
if self.ARGS.file is None and self.ARGS.directory is None:
eprint("ERROR: Must pass a 'file' or 'directory' for the corpus")
return None
if self.ARGS.directory is not None:
dir = os.path.dirname(os.path.join(self.ARGS.directory, ''))
for file in os.listdir(dir):
filename = os.path.basename(file).split('.')[0]
if filename == "":
eprint(f"ERROR: Corpus name is blank for file: {file}")
return None
with open(os.path.join(dir, file), 'rb') as corpus_contents:
resp = self.STT.add_corpus(self.get_customization_id(), filename, corpus_contents, allow_overwrite="true")
self.wait_until('ready', f"Creating corpora {filename}")
eprint("Corpora " + filename + " processed")
return resp
if self.ARGS.file is not None:
name = self.ARGS.name
if self.ARGS.name is None:
name = os.path.basename(self.ARGS.file)
eprint(f"WARNING: A corpus 'name' is required. Using default name '{name}'")
with open(self.ARGS.file, 'rb') as corpus_contents:
return self.STT.add_corpus(self.get_customization_id(), name, corpus_contents, allow_overwrite="true")
def get_corpus(self):
if self.ARGS.name is None:
eprint(f"ERROR: A corpus 'name' is required.")
return None
return self.STT.get_corpus(self.get_customization_id(), self.ARGS.name)
def delete_corpus(self):
if self.ARGS.name is None:
eprint(f"ERROR: A corpus 'name' is required.")
return None
return self.STT.delete_corpus(self.get_customization_id(), self.ARGS.name)
'''
Custom word functions
'''
def get_type_word_handlers(self):
handlers = {}
handlers['list' ] = self.list_words
handlers['get' ] = self.get_word
handlers['create'] = self.add_words
handlers['update'] = self.add_words
handlers['delete'] = self.delete_word
return handlers
def list_words(self):
return self.STT.list_words(self.get_customization_id())
def get_word(self):
if self.ARGS.name is None:
eprint(f"ERROR: A word 'name' is required.")
return None
return self.STT.get_word(self.get_customization_id(), self.ARGS.name)
def add_words(self):
if self.ARGS.file is None:
eprint(f"ERROR: A word 'file' is required.\nThe file format is documented in https://cloud.ibm.com/docs/speech-to-text?topic=speech-to-text-languageCreate#addWords")
return None
with open(self.ARGS.file, 'rb') as word_contents_str:
#SDK does not allow a file stream, you need to create CustomWord objects instead
words_json = json.load(word_contents_str)
words = []
for word_json in words_json['words']:
words.append(CustomWord(word = word_json.get('word'),
sounds_like = word_json.get('sounds_like'),
display_as = word_json.get('display_as')
))
resp = self.STT.add_words(self.get_customization_id(), words)
self.wait_until('ready', f"Creating words from {self.ARGS.file}")
eprint("Words in file processed.")
return resp
def delete_word(self):
if self.ARGS.name is None:
eprint(f"ERROR: A word 'name' is required.")
return None
return self.STT.delete_word(self.get_customization_id(), self.ARGS.name)
'''
Grammar functions
'''
def get_type_grammar_handlers(self):
handlers = {}
handlers['list' ] = self.list_grammars
handlers['get' ] = self.get_grammar
handlers['create'] = self.add_grammar
handlers['update'] = self.update_grammar
handlers['delete'] = self.delete_grammar
return handlers
def list_grammars(self):
return self.STT.list_grammars(self.get_customization_id())
def add_grammar(self):
return self.do_write_grammar(update=False)
def update_grammar(self):
return self.do_write_grammar(update=True)
def do_write_grammar(self, update:bool):
if self.ARGS.file is None:
eprint("ERROR: Must pass a 'file' for the grammar")
return None
name = self.ARGS.name
if self.ARGS.name is None:
name = os.path.basename(self.ARGS.file)
eprint(f"WARNING: A grammar 'name' is required. Using default name '{name}'")
if self.ARGS.file.endswith('.abnf'):
content_type = "application/srgs"
elif self.ARGS.file.endswith('.xml'):
content_type = "application/srgs+xml"
else:
eprint(f"ERROR: Expected .abnf or .xml file type for grammar.")
return None
with open(self.ARGS.file, 'rb') as grammar_contents:
return self.STT.add_grammar(self.get_customization_id(), name, grammar_contents, content_type=content_type, allow_overwrite=update)
def get_grammar(self):
if self.ARGS.name is None:
eprint(f"ERROR: A grammar 'name' is required.")
return None
return self.STT.get_grammar(self.get_customization_id(), self.ARGS.name)
def delete_grammar(self):
if self.ARGS.name is None:
eprint(f"ERROR: A grammar 'name' is required.")
return None
return self.STT.delete_grammar(self.get_customization_id(), self.ARGS.name)
def create_parser():
parser = ArgumentParser(description='Run IBM Speech To Text model-related commands')
parser.add_argument('-c', '--config_file', type=str, required=False, default="config.ini", help='Configuration file including connection details')
parser.add_argument('-o', '--operation', type=str, required=True, choices=["list","get","create","update","delete","reset"], help="operation to perform")
parser.add_argument('-t', '--type', type=str, required=True, choices=["base_model","custom_model","corpus","word","grammar"], help="type the operation works on")
parser.add_argument('-n', '--name', type=str, required=False, help="name the operation works on, for instance 'MyModel' or 'corpus1'.")
parser.add_argument('-d', '--description', type=str, required=False, help="description of the object being created; used only in create")
parser.add_argument('-f', '--file', type=str, required=False, help="path to a file supporting the operation, for instance a corpus file or grammar file")
parser.add_argument('-dir', '--directory', type=str, required=False, help="directory containing corpus files")
return parser
def main(ARGS):
config = Config(ARGS.config_file)
model_tool = ModelTool(config, ARGS)
model_tool.execute()
if __name__ == '__main__':
ARGS = create_parser().parse_args()
main(ARGS)