-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathplot_sensitivity_analysis.py
112 lines (95 loc) · 3.33 KB
/
plot_sensitivity_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
#!/usr/bin/env python
import os
import subprocess
import plotting.configure_seaborn as cs
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
sns.set(context='paper', style='ticks', rc=cs.rc_params)
plots_directory = os.path.join(os.path.sep, "calc", os.getenv("USER"),
"data", "dendritic_rewiring", "rewiring_ex2/sensitivity_analysis")
mean_best = 7.400
std_best = 0.566
# These values have to be set to the values obtained via `stats_rewiring.py`.
mean_assemblies_neg = [7.320,
7.080,
7.240,
7.280,
7.080,
7.440,
7.200,
6.360,
7.240,
7.280,
7.240,
7.400
]
std_assemblies_neg = [0.676,
0.891,
0.650,
0.665,
0.744,
0.753,
0.748,
0.975,
0.709,
0.776,
0.763,
0.566
]
mean_assemblies_pos = [7.400,
7.280,
7.200,
7.040,
7.080,
7.040,
7.160,
6.400,
7.600,
7.280,
7.360,
7.400
]
std_assemblies_pos = [0.632,
0.722,
0.632,
0.720,
0.845,
0.720,
0.731,
0.849,
0.566,
0.665,
0.742,
0.566
]
mean_assemblies = np.array([mean_assemblies_pos, mean_assemblies_neg])
std_assemblies = np.array([std_assemblies_pos, std_assemblies_neg])
diff_mean = np.abs(mean_best - mean_assemblies)
max_diff_mean = np.max(diff_mean, axis=0)
min_diff_mean = np.min(diff_mean, axis=0)
idc = np.argmax(diff_mean, axis=0)
# sdi = max_diff_mean / np.diag(std_assemblies[idc])
sdi = 100/10 * max_diff_mean / mean_best
# sdi = 100/10 * min_diff_mean / mean_best
# sdi = 100/10 * np.mean(diff_mean, axis=0) / mean_best
print(diff_mean)
print(sdi)
param = [r"$\eta$", r"$T$", r"$c_{\mathcal{L}}$", r"$\gamma$", r"$\lambda$", r"$c_{\mathrm{w}}$",
r"$c_{\mathcal{STDP}}$", r"$\mathcal{STDP}_{\mathrm{th}}$", r"$\tau_{\mathrm{x}}$",
r"$c_{\mathrm{ds}}$", r"$\Delta_{\mathrm{min}}^{\mathrm{ds}}$",
r"$\Delta_{\mathrm{max}}^{\mathrm{ds}}$"]
df = pd.DataFrame(data={param[i]: sdi[i] for i in range(len(sdi))}, index=range(len(sdi)))
colors = sns.color_palette().as_hex()
cs.set_figure_size(176 + 7, 60 + 6)
fig = plt.figure()
ax = sns.barplot(data=df, ci=None, color=colors[0])
ax.set_ylim([0, 1.4])
ax.set_ylabel("$\mathrm{SI}\%$")
ax.set_xlabel("Parameter")
plt.tight_layout()
fname = os.path.join(plots_directory, "sensitivity")
fig.savefig(fname + ".pdf", pad_inches=0.01)
subprocess.call(["pdftops", "-eps", fname + ".pdf", fname + ".eps"])
plt.close(fig)