-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
executable file
·143 lines (124 loc) · 6.36 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import tensorflow as tf
import ujson as json
import numpy as np
from tqdm import tqdm
from collections import Counter
from util import get_batch, get_feeddict,get_pretrain_batch
import os
from loader import read_glove, get_counter, token2id, read_data,read_pretrain
tqdm.monitor_interval = 0
np.set_printoptions(threshold=np.nan)
def read(config):
counter = get_counter(config.train_file)
if os.path.exists(config.emb_dict):
with open(config.emb_dict, "r") as fh:
emb_dict = json.load(fh)
else:
emb_dict = read_glove(config.glove_word_file, counter, config.glove_word_size, config.glove_dim)
with open(config.emb_dict, "w") as fh:
json.dump(emb_dict, fh)
word2idx_dict, fixed_emb, traiable_emb = token2id(config, counter, emb_dict)
train_data = read_data(config.train_file)
dev_data = read_data(config.dev_file)
test_data = read_data(config.test_file)
pretrain_data = read_pretrain(config)
pretrain_data2 = read_pretrain(config,2)
return word2idx_dict, fixed_emb, traiable_emb, train_data, dev_data, test_data,pretrain_data,pretrain_data2
def log(config, data, pretrain_data,word2idx_dict, model, sess, writer=None, label="train", entropy=None, bound=None):
global_step = sess.run(model.global_step) + 1
golds, preds, vals, sim_preds, sim_vals = [], [], [], [], []
simss = []
for batch,_ in zip(get_batch(config, data, word2idx_dict,shuffle=False),get_pretrain_batch(config,pretrain_data,word2idx_dict,pretrain=False)):
gold, pred, val, sim_pred, sim_val = sess.run([model.gold, model.pred, model.max_val, model.sim_pred, model.sim_max_val],
feed_dict=get_feeddict(model, batch,_, is_train=False))
prt_sim = sess.run(model.sim, feed_dict=get_feeddict(model, batch, _, is_train=False))
batch_sents = batch['raw_sent']
golds += gold.tolist()
preds += pred.tolist()
vals += val.tolist()
sim_preds += sim_pred.tolist()
sim_vals += sim_val.tolist()
threshold = [0.01 * i for i in range(1, 200)]
threshold2 = [0.05 * i for i in range(1, 20)]
acc, recall, f1, jac = 0., 0., 0., 0.
acc2, recall2, f12, jac2 = 0., 0., 0., 0.
best_entro = 0.
best_bound = 0.
if entropy is None:
for t in threshold:
_preds = (np.asarray(vals, dtype=np.float32) <= t).astype(np.int32) * np.asarray(preds, dtype=np.int32)
_preds = _preds.tolist()
_acc, _recall, _f1, _jac = evaluate(golds, _preds)
if _f1 > f1:
acc, recall, f1, jac = _acc, _recall, _f1, _jac
best_entro = t
else:
preds = (np.asarray(vals, dtype=np.float32) <= entropy).astype(np.int32) * np.asarray(preds, dtype=np.int32)
preds = preds.tolist()
acc, recall, f1, jac = evaluate(golds, preds)
if bound is None:
for t in threshold2:
_sim_preds = (np.asarray(sim_vals, dtype=np.float32) >= t).astype(np.int32) * np.asarray(sim_preds, dtype=np.int32)
_sim_preds = _sim_preds.tolist()
_acc2, _recall2, _f12, _jac2 = evaluate(golds, _sim_preds)
if _f12 > f12:
acc2, recall2, f12, jac2 = _acc2, _recall2, _f12, _jac2
best_bound = t
else:
sim_preds = (np.asarray(sim_vals, dtype=np.float32) >= bound).astype(np.int32) * np.asarray(sim_preds, dtype=np.int32)
sim_preds = sim_preds.tolist()
acc2, recall2, f12, jac2 = evaluate(golds, sim_preds)
acc_sum = tf.Summary(value=[tf.Summary.Value(tag="{}/acc".format(label), simple_value=acc), ])
rec_sum = tf.Summary(value=[tf.Summary.Value(tag="{}/rec".format(label), simple_value=recall), ])
f1_sum = tf.Summary(value=[tf.Summary.Value(tag="{}/f1".format(label), simple_value=f1), ])
jac_sum = tf.Summary(value=[tf.Summary.Value(tag="{}/jac".format(label), simple_value=jac), ])
acc_sum2 = tf.Summary(value=[tf.Summary.Value(tag="{}/sim_acc".format(label), simple_value=acc2), ])
rec_sum2 = tf.Summary(value=[tf.Summary.Value(tag="{}/sim_rec".format(label), simple_value=recall2), ])
f1_sum2 = tf.Summary(value=[tf.Summary.Value(tag="{}/sim_f1".format(label), simple_value=f12), ])
jac_sum2 = tf.Summary(value=[tf.Summary.Value(tag="{}/sim_jac".format(label), simple_value=jac2), ])
entropy_sum = tf.Summary(value=[tf.Summary.Value(tag="{}/entro".format(label), simple_value=sum(vals) / len(vals)), ])
if writer is not None:
writer.add_summary(acc_sum, global_step)
writer.add_summary(rec_sum, global_step)
writer.add_summary(f1_sum, global_step)
writer.add_summary(jac_sum, global_step)
writer.add_summary(acc_sum2, global_step)
writer.add_summary(rec_sum2, global_step)
writer.add_summary(f1_sum2, global_step)
writer.add_summary(jac_sum2, global_step)
writer.add_summary(entropy_sum, global_step)
res = [golds, preds]
return (acc, recall, f1), (acc2, recall2, f12), (best_entro, best_bound), res
def evaluate(key, prediction):
correct_by_relation = Counter()
guessed_by_relation = Counter()
gold_by_relation = Counter()
union_relation = Counter()
for row in range(len(key)):
gold = key[row]
guess = prediction[row]
if gold == 0 and guess == 0:
pass
elif gold == 0 and guess != 0:
guessed_by_relation[guess] += 1
elif gold != 0 and guess == 0:
gold_by_relation[gold] += 1
elif gold != 0 and guess != 0:
guessed_by_relation[guess] += 1
gold_by_relation[gold] += 1
union_relation[gold] += 1
if gold == guess:
correct_by_relation[guess] += 1
prec_micro = 1.0
if sum(guessed_by_relation.values()) > 0:
prec_micro = float(sum(correct_by_relation.values())) / float(sum(guessed_by_relation.values()))
recall_micro = 0.0
if sum(gold_by_relation.values()) > 0:
recall_micro = float(sum(correct_by_relation.values())) / float(sum(gold_by_relation.values()))
f1_micro = 0.0
if prec_micro + recall_micro > 0.0:
f1_micro = 2.0 * prec_micro * recall_micro / (prec_micro + recall_micro)
jaccard_micro = 0.0
if sum(union_relation.values()) > 0:
jaccard_micro = float(sum(correct_by_relation.values())) / float(sum(union_relation.values()))
return prec_micro, recall_micro, f1_micro, jaccard_micro