forked from ChanglongJiangGit/A2J-Transformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbase.py
160 lines (127 loc) · 5.32 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import os
import os.path as osp
import math
import time
import glob
import abc
from torch.utils.data import DataLoader
import torch.optim
import torchvision.transforms as transforms
from config import cfg
from dataset import Dataset
from timer import Timer
from logger import colorlogger
from torch.nn.parallel.data_parallel import DataParallel
from model import get_model
class Base(object):
__metaclass__ = abc.ABCMeta
def __init__(self, log_name='logs.txt'):
self.cur_epoch = 0
# timer
self.tot_timer = Timer()
self.gpu_timer = Timer()
self.read_timer = Timer()
# logger
self.logger = colorlogger(cfg.log_dir, log_name=log_name)
@abc.abstractmethod
def _make_batch_generator(self):
return
@abc.abstractmethod
def _make_model(self):
return
class Trainer(Base):
def __init__(self):
super(Trainer, self).__init__(log_name = 'train_logs.txt')
def get_optimizer(self, model):
optimizer = torch.optim.Adam(model.parameters(), lr=cfg.lr)
return optimizer
def set_lr(self, epoch):
if len(cfg.lr_dec_epoch) == 0:
return cfg.lr
for e in cfg.lr_dec_epoch:
if epoch < e:
break
if epoch < cfg.lr_dec_epoch[-1]:
idx = cfg.lr_dec_epoch.index(e)
for g in self.optimizer.param_groups:
g['lr'] = cfg.lr / (cfg.lr_dec_factor ** idx)
else:
for g in self.optimizer.param_groups:
g['lr'] = cfg.lr / (cfg.lr_dec_factor ** len(cfg.lr_dec_epoch))
def get_lr(self):
for g in self.optimizer.param_groups:
cur_lr = g['lr']
return cur_lr
def _make_batch_generator(self):
# data load and construct batch generator
self.logger.info("Creating train dataset...")
trainset_loader = Dataset(transforms.ToTensor(), "train")
batch_generator = DataLoader(dataset=trainset_loader, batch_size=cfg.num_gpus*cfg.train_batch_size, shuffle=True,
num_workers=cfg.num_thread, pin_memory=True, drop_last=True)
self.joint_num = trainset_loader.joint_num
self.itr_per_epoch = math.ceil(trainset_loader.__len__() / cfg.num_gpus / cfg.train_batch_size)
self.batch_generator = batch_generator
def _make_model(self):
# prepare network
self.logger.info("Creating graph and optimizer...")
model = get_model('train', self.joint_num)
model = DataParallel(model).cuda()
optimizer = self.get_optimizer(model)
if cfg.continue_train:
start_epoch, model, optimizer = self.load_model(model, optimizer)
else:
start_epoch = 0
model.train()
self.start_epoch = start_epoch
self.model = model
self.optimizer = optimizer
def save_model(self, state, epoch):
file_path = osp.join(cfg.model_dir,'snapshot_{}.pth.tar'.format(str(epoch)))
torch.save(state, file_path)
self.logger.info("Write snapshot into {}".format(file_path))
def load_model(self, model, optimizer):
model_file_list = glob.glob(osp.join(cfg.model_dir,'*.pth.tar'))
cur_epoch = max([int(file_name[file_name.find('snapshot_') + 9 : file_name.find('.pth.tar')]) for file_name in model_file_list])
model_path = osp.join(cfg.model_dir, 'snapshot_' + str(cur_epoch) + '.pth.tar')
self.logger.info('Load checkpoint from {}'.format(model_path))
ckpt = torch.load(model_path)
start_epoch = ckpt['epoch'] + 1
model.load_state_dict(ckpt['network'])
try:
optimizer.load_state_dict(ckpt['optimizer'])
except:
pass
return start_epoch, model, optimizer
class Tester(Base):
def __init__(self, test_epoch):
self.test_epoch = int(test_epoch)
super(Tester, self).__init__(log_name = 'test_logs.txt')
def _make_batch_generator(self, test_set):
# data load and construct batch generator
self.logger.info("Creating " + test_set + " dataset...")
testset_loader = Dataset(transforms.ToTensor(), test_set)
batch_generator = DataLoader(dataset=testset_loader, batch_size=cfg.num_gpus*cfg.test_batch_size, shuffle=False, num_workers=cfg.num_thread, pin_memory=True)
self.joint_num = testset_loader.joint_num
self.batch_generator = batch_generator
self.testset = testset_loader
def _make_model(self):
model_path = os.path.join(cfg.model_dir, 'snapshot_%d.pth.tar' % self.test_epoch)
assert os.path.exists(model_path), 'Cannot find model at ' + model_path
self.logger.info('Load checkpoint from {}'.format(model_path))
# prepare network
self.logger.info("Creating graph...")
model = get_model('test', self.joint_num)
model = DataParallel(model).cuda()
ckpt = torch.load(model_path)
model.load_state_dict(ckpt['network'])
model.eval()
self.model = model
def _evaluate(self, preds):
mpjpe_dict = self.testset.evaluate(preds)
return mpjpe_dict