forked from ChanglongJiangGit/A2J-Transformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
147 lines (119 loc) · 5.28 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
import os.path as osp
import sys
import math
import numpy as np
def clean_file(path):
## Clear the files under the path
for i in os.listdir(path):
content_path = os.path.join(path, i)
if os.path.isdir(content_path):
clean_file(content_path)
else:
assert os.path.isfile(content_path) is True
os.remove(content_path)
class Config:
# ~~~~~~~~~~~~~~~~~~~~~~Dataset~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
dataset = 'InterHand2.6M' # InterHand2.6M nyu hands2017
pose_representation = '2p5D' #2p5D
# ~~~~~~~~~~~~~~~~~~~~~~ paths~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
## Please set your path
## Interhand2.6M dataset path. you should change to your dataset path.
interhand_anno_dir = '/data/data1/Interhand2.6M_5fps/annotations'
interhand_images_path = '/data/data1/Interhand2.6M_5fps/images'
## current file dir. change this path to your A2J-Transformer folder dir.
cur_dir = '/data/data2/a2jformer/camera_ready'
# ~~~~~~~~~~~~~~~~~~~~~~~~input, output~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
input_img_shape = (256, 256)
output_hm_shape = (256, 256, 256) # (depth, height, width)
output_hm_shape_all = 256 ## For convenient
sigma = 2.5
bbox_3d_size = 400 # depth axis
bbox_3d_size_root = 400 # depth axis
output_root_hm_shape = 64 # depth axis
# ~~~~~~~~~~~~~~~~~~~~~~~~backbone config~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
num_feature_levels = 4
lr_backbone = 1e-4
masks = False
backbone = 'resnet50'
dilation = True # If true, we replace stride with dilation in the last convolutional block (DC5)
if dataset == 'InterHand2.6M':
keypoint_num = 42
elif dataset == 'nyu':
keypoint_num = 14
elif dataset == 'hands2017':
keypoint_num = 21
# ~~~~~~~~~~~~~~~~~~~~~~~~transformer config~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
position_embedding = 'sine' #'sine' #'convLearned' # learned
hidden_dim = 256
dropout = 0.1
nheads = 8
dim_feedforward = 1024
enc_layers = 6
dec_layers = 6
pre_norm = False
num_feature_levels = 4
dec_n_points = 4
enc_n_points = 4
num_queries = 768 ## query numbers, default is 256*3 = 768
kernel_size = 256
two_stage = False ## Whether to use the two-stage deformable-detr, please select False.
use_dab = True ## Whether to use dab-detr, please select True.
num_patterns = 0
anchor_refpoints_xy = True ## Whether to use the anchor anchor point as the reference point coordinate, True.
is_3D = True # True
fix_anchor = True ## Whether to fix the position of reference points to prevent update, True.
use_lvl_weights = False ## Whether to assign different weights to the loss of each layer, the improvement is relatively limited.
lvl_weights = [0.1, 0.15, 0.15, 0.15, 0.15, 0.3]
# ~~~~~~~~~~~~~~~~~~~~~~~~a2j config~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
RegLossFactor = 3
# ~~~~~~~~~~~~~~~~~~~~~~~~training config~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
lr_dec_epoch = [24, 35] if dataset == 'InterHand2.6M' else [45,47]
end_epoch = 42 if dataset == 'InterHand2.6M' else 50
lr = 1e-4
lr_dec_factor = 5
train_batch_size = 12
continue_train = False ## Whether to continue training, default is False
# ~~~~~~~~~~~~~~~~~~~~~~~~testing config~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
test_batch_size = 48
trans_test = 'gt' ## 'gt', 'rootnet' # 'rootnet' is not used
# ~~~~~~~~~~~~~~~~~~~~~~~~dataset config~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
use_single_hand_dataset = True ## Use single-handed data, default is True
use_inter_hand_dataset = True ## Using interacting hand data, default is True
# ~~~~~~~~~~~~~~~~~~~~~~~~others~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
num_thread = 8
gpu_ids = '0' ## your gpu ids, for example, '0', '1-3'
num_gpus = 1
# ~~~~~~~~~~~~~~~~~~~~~~~~directory setup~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
data_dir = osp.join(cur_dir, 'data')
output_dir = osp.join(cur_dir, 'output')
datalistDir = osp.join(cur_dir, 'datalist') ## this is used to save the dataset datalist, easy to debug.
vis_2d_dir = osp.join(output_dir, 'vis_2d')
vis_3d_dir = osp.join(output_dir, 'vis_3d')
log_dir = osp.join(output_dir, 'log')
result_dir = osp.join(output_dir, 'result')
model_dir = osp.join(output_dir, 'model_dump')
tensorboard_dir = osp.join(output_dir, 'tensorboard_log')
clean_tensorboard_dir = False
clean_log_dir = False
if clean_tensorboard_dir is True:
clean_file(tensorboard_dir)
if clean_log_dir is True:
clean_file(log_dir)
def set_args(self, gpu_ids, continue_train=False):
self.gpu_ids = gpu_ids
self.num_gpus = len(self.gpu_ids.split(','))
self.continue_train = continue_train
os.environ["CUDA_VISIBLE_DEVICES"] = self.gpu_ids
print('>>> Using GPU: {}'.format(self.gpu_ids))
cfg = Config()
from utils.dir import add_pypath, make_folder
add_pypath(osp.join(cfg.data_dir))
add_pypath(osp.join(cfg.data_dir, cfg.dataset))
make_folder(cfg.datalistDir)
make_folder(cfg.model_dir)
make_folder(cfg.vis_2d_dir)
make_folder(cfg.vis_3d_dir)
make_folder(cfg.log_dir)
make_folder(cfg.result_dir)
make_folder(cfg.tensorboard_dir)