forked from ChanglongJiangGit/A2J-Transformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
432 lines (368 loc) · 21.5 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
import numpy as np
import torch
import torch.utils.data
import cv2
import os.path as osp
from config import cfg
from utils.preprocessing import load_img, load_skeleton, get_bbox, process_bbox, augmentation, transform_input_to_output_space, trans_point2d
from utils.transforms import world2cam, cam2pixel, pixel2cam
from utils.vis import vis_keypoints, vis_3d_keypoints
import json
from pycocotools.coco import COCO
from tqdm import tqdm
import pickle
class Dataset(torch.utils.data.Dataset):
def __init__(self, transform, mode):
self.mode = mode # train, test, val
self.img_path = cfg.interhand_images_path
self.annot_path = cfg.interhand_anno_dir
self.datalist_dir = cfg.datalistDir
if self.mode == 'val':
self.rootnet_output_path = '../rootnet_output/rootnet_interhand2.6m_output_val.json'
else:
self.rootnet_output_path = '../rootnet_output/rootnet_interhand2.6m_output_test.json'
self.transform = transform
self.joint_num = 21 # single hand
self.root_joint_idx = {'right': 20, 'left': 41}
self.joint_type = {'right': np.arange(0,self.joint_num), 'left': np.arange(self.joint_num,self.joint_num*2)}
self.skeleton = load_skeleton(osp.join(self.annot_path, 'skeleton.txt'), self.joint_num*2)
self.use_single_hand_dataset = cfg.use_single_hand_dataset
self.use_inter_hand_dataset = cfg.use_inter_hand_dataset
self.vis = False
## use the total Interhand2.6M dataset
datalist_file_path_sh = osp.join(self.datalist_dir , mode + '_datalist_sh_all.pkl')
datalist_file_path_ih = osp.join(self.datalist_dir , mode + '_datalist_ih_all.pkl')
# generate_new_datalist : whether to get datalist from existing file
generate_new_datalist = True
if osp.exists(datalist_file_path_sh) and osp.exists(datalist_file_path_ih):
if (osp.getsize(datalist_file_path_sh) + osp.getsize(datalist_file_path_ih)) != 0:
generate_new_datalist = False
## if the datalist is empty or doesn't exist, generate the pkl file and save the datalist
if generate_new_datalist is True:
self.datalist = []
self.datalist_sh = []
self.datalist_ih = []
self.sequence_names = []
# load annotation
print("Load annotation from " + osp.join(self.annot_path, self.mode))
db = COCO(osp.join(self.annot_path, self.mode, 'InterHand2.6M_' + self.mode + '_data.json'))
with open(osp.join(self.annot_path, self.mode, 'InterHand2.6M_' + self.mode + '_camera.json')) as f:
cameras = json.load(f)
with open(osp.join(self.annot_path, self.mode, 'InterHand2.6M_' + self.mode + '_joint_3d.json')) as f:
joints = json.load(f)
# rootnet is not used
if (self.mode == 'val' or self.mode == 'test') and cfg.trans_test == 'rootnet':
print("Get bbox and root depth from " + self.rootnet_output_path)
rootnet_result = {}
with open(self.rootnet_output_path) as f:
annot = json.load(f)
for i in range(len(annot)):
rootnet_result[str(annot[i]['annot_id'])] = annot[i]
else:
print("Get bbox and root depth from groundtruth annotation")
# get images and annotations
for aid in tqdm(list(db.anns.keys())[::1]):
ann = db.anns[aid]
image_id = ann['image_id']
img = db.loadImgs(image_id)[0]
hand_type = ann['hand_type']
capture_id = img['capture']
subject = img['subject']
seq_name = img['seq_name']
cam = img['camera']
frame_idx = img['frame_idx']
img_path = osp.join(self.img_path, self.mode, img['file_name'])
campos, camrot = np.array(cameras[str(capture_id)]['campos'][str(cam)], dtype=np.float32), np.array(cameras[str(capture_id)]['camrot'][str(cam)], dtype=np.float32)
focal, princpt = np.array(cameras[str(capture_id)]['focal'][str(cam)], dtype=np.float32), np.array(cameras[str(capture_id)]['princpt'][str(cam)], dtype=np.float32)
joint_world = np.array(joints[str(capture_id)][str(frame_idx)]['world_coord'], dtype=np.float32)
joint_cam = world2cam(joint_world.transpose(1,0), camrot, campos.reshape(3,1)).transpose(1,0)
joint_img = cam2pixel(joint_cam, focal, princpt)[:,:2]
joint_valid = np.array(ann['joint_valid'],dtype=np.float32).reshape(self.joint_num*2)
## Filter the data that does not meet the training requirements.
## All preprocessing refers to the baseline of Interhand2.6M(ECCV2020).
# if root is not valid -> root-relative 3D pose is also not valid. Therefore, mark all joints as invalid
joint_valid[self.joint_type['right']] *= joint_valid[self.root_joint_idx['right']]
joint_valid[self.joint_type['left']] *= joint_valid[self.root_joint_idx['left']]
# hand_type = ann['hand_type']
hand_type_valid = np.array((ann['hand_type_valid']), dtype=np.float32)
# rootnet is not used
if (self.mode == 'val' or self.mode == 'test') and cfg.trans_test == 'rootnet':
bbox = np.array(rootnet_result[str(aid)]['bbox'],dtype=np.float32)
abs_depth = {'right': rootnet_result[str(aid)]['abs_depth'][0], 'left': rootnet_result[str(aid)]['abs_depth'][1]}
else:
img_width, img_height = img['width'], img['height']
bbox = np.array(ann['bbox'],dtype=np.float32) # x,y,w,h
bbox = process_bbox(bbox, (img_height, img_width))
abs_depth = {'right': joint_cam[self.root_joint_idx['right'],2], 'left': joint_cam[self.root_joint_idx['left'],2]} #根节点的深度值,以此为参考
cam_param = {'focal': focal, 'princpt': princpt}
joint = {'cam_coord': joint_cam, 'img_coord': joint_img, 'valid': joint_valid}
data = {'img_path': img_path, 'seq_name': seq_name, 'cam_param': cam_param,
'bbox': bbox, 'joint': joint, 'hand_type': hand_type, 'hand_type_valid': hand_type_valid,
'abs_depth': abs_depth, 'file_name': img['file_name'], 'capture': capture_id, 'cam': cam,
'frame': frame_idx, 'subject': subject, 'imgid': image_id
}
if hand_type == 'right' or hand_type == 'left':
if self.use_single_hand_dataset is True:
self.datalist_sh.append(data)
elif hand_type == 'interacting':
if self.use_inter_hand_dataset is True:
self.datalist_ih.append(data)
if seq_name not in self.sequence_names:
self.sequence_names.append(seq_name)
# Save the generated datalist to pkl file, easy to debug
with open(datalist_file_path_sh, 'wb') as fs:
pickle.dump(self.datalist_sh, fs)
with open(datalist_file_path_ih, 'wb') as fi:
pickle.dump(self.datalist_ih, fi)
# Directly load the datalist saved in the previous file
else:
if self.use_single_hand_dataset is True:
with open (datalist_file_path_sh, 'rb') as fsl:
self.datalist_sh = pickle.load(fsl)
else:
self.datalist_sh = []
if self.use_inter_hand_dataset is True:
with open (datalist_file_path_ih, 'rb') as fil:
self.datalist_ih = pickle.load(fil)
else:
self.datalist_ih = []
self.datalist = self.datalist_sh + self.datalist_ih
print('Number of annotations in single hand sequences: ' + str(len(self.datalist_sh)))
print('Number of annotations in interacting hand sequences: ' + str(len(self.datalist_ih)))
def handtype_str2array(self, hand_type):
if hand_type == 'right':
return np.array([1,0], dtype=np.float32)
elif hand_type == 'left':
return np.array([0,1], dtype=np.float32)
elif hand_type == 'interacting':
return np.array([1,1], dtype=np.float32)
else:
assert 0, print('Not supported hand type: ' + hand_type)
def __len__(self):
return len(self.datalist)
def __getitem__(self, idx):
data = self.datalist[idx]
img_path, bbox, joint, hand_type, hand_type_valid = data['img_path'], data['bbox'], data['joint'], data['hand_type'], data['hand_type_valid']
joint_cam = joint['cam_coord'].copy(); joint_img = joint['img_coord'].copy(); joint_valid = joint['valid'].copy();
hand_type = self.handtype_str2array(hand_type)
joint_coord = np.concatenate((joint_img, joint_cam[:,2,None].copy()),1)
seq_name = data['seq_name']
contact_vis_np = np.zeros((32, 2)).astype(np.float32)
# image load
img = load_img(img_path)
# augmentation
img, joint_coord, joint_valid, hand_type, inv_trans = augmentation(img, bbox, joint_coord, joint_valid, hand_type, self.mode, self.joint_type)
rel_root_depth = np.array([joint_coord[self.root_joint_idx['left'],2] - joint_coord[self.root_joint_idx['right'],2]],dtype=np.float32).reshape(1)
root_valid = np.array([joint_valid[self.root_joint_idx['right']] * joint_valid[self.root_joint_idx['left']]])*1.0
# transform to output heatmap space
joint_coord, joint_valid, rel_root_depth, root_valid =\
transform_input_to_output_space(joint_coord, joint_valid, rel_root_depth, root_valid, self.root_joint_idx, self.joint_type)
# Some images are blank, filter for training
if np.sum(img) < 1e-4 :
joint_valid *= 0
root_valid *= 0
hand_type_valid *= 0
contact_vis_np *= 0
img = self.transform(img.astype(np.float32)) / 255.
# use zero mask.
mask = np.zeros((img.shape[1], img.shape[2])).astype(np.bool)
mask = self.transform(mask.astype(np.uint8))
inputs = {'img': img, 'mask': mask}
targets = {'joint_coord': joint_coord, 'rel_root_depth': rel_root_depth, 'hand_type': hand_type}
meta_info = {'joint_valid': joint_valid, 'root_valid': root_valid, 'hand_type_valid': hand_type_valid,
'inv_trans': inv_trans, 'capture': int(data['capture']), 'cam': int(data['cam']), 'frame': int(data['frame'])}
return inputs, targets, meta_info
def evaluate(self, preds):
print()
print('Evaluation start...')
gts = self.datalist
preds_joint_coord, inv_trans, joint_valid_used = preds['joint_coord'], preds['inv_trans'], preds['joint_valid']
assert len(gts) == len(preds_joint_coord)
sample_num = len(gts)
mpjpe_sh = [[] for _ in range(self.joint_num*2)]
mpjpe_ih = [[] for _ in range(self.joint_num*2)]
mpjpe_sh_2d = [[] for _ in range(self.joint_num*2)]
mpjpe_sh_3d = [[] for _ in range(self.joint_num*2)]
mpjpe_ih_2d = [[] for _ in range(self.joint_num*2)]
mpjpe_ih_3d = [[] for _ in range(self.joint_num*2)]
tot_err = []
mpjpe_dict = {}
mrrpe = []
acc_hand_cls = 0; hand_cls_cnt = 0;
for n in tqdm(range(sample_num),ncols=150):
vis = False
mpjpe_per_data_list = []
mpjpe_per_data = 0
data = gts[n]
bbox, cam_param, joint, gt_hand_type, hand_type_valid = data['bbox'], data['cam_param'], data['joint'], data['hand_type'], data['hand_type_valid']
hand_type = data['hand_type']
focal = cam_param['focal']
princpt = cam_param['princpt']
gt_joint_coord = joint['cam_coord']
gt_joint_img = joint['img_coord']
## use original joint_valid param.
joint_valid = joint['valid']
# joint_valid = joint_valid_used[n]
# restore xy coordinates to original image space
pred_joint_coord_img = preds_joint_coord[n].copy()
pred_joint_coord_img[:,0] = pred_joint_coord_img[:,0]/cfg.output_hm_shape[2]*cfg.input_img_shape[1]
pred_joint_coord_img[:,1] = pred_joint_coord_img[:,1]/cfg.output_hm_shape[1]*cfg.input_img_shape[0]
for j in range(self.joint_num*2):
pred_joint_coord_img[j,:2] = trans_point2d(pred_joint_coord_img[j,:2],inv_trans[n])
# restore depth to original camera space
pred_joint_coord_img[:,2] = (pred_joint_coord_img[:,2]/cfg.output_hm_shape[0] * 2 - 1) * (cfg.bbox_3d_size/2)
# add root joint depth
pred_joint_coord_img[self.joint_type['right'],2] += data['abs_depth']['right']
pred_joint_coord_img[self.joint_type['left'],2] += data['abs_depth']['left']
# back project to camera coordinate system
pred_joint_coord_cam = pixel2cam(pred_joint_coord_img, focal, princpt)
# root joint alignment
for h in ('right', 'left'):
pred_joint_coord_cam[self.joint_type[h]] = pred_joint_coord_cam[self.joint_type[h]] - pred_joint_coord_cam[self.root_joint_idx[h],None,:]
gt_joint_coord[self.joint_type[h]] = gt_joint_coord[self.joint_type[h]] - gt_joint_coord[self.root_joint_idx[h],None,:]
# mpjpe
## xyz mpjpe
for j in range(self.joint_num*2):
if joint_valid[j]: ## 在这里,限制了只加载valid的坐标值
if gt_hand_type == 'right' or gt_hand_type == 'left':
mpjpe_sh[j].append(np.sqrt(np.sum((pred_joint_coord_cam[j] - gt_joint_coord[j])**2)))
mpjpe_per_data_list.append(np.sqrt(np.sum((pred_joint_coord_cam[j] - gt_joint_coord[j])**2)))
# continue
else:
mpjpe_ih[j].append(np.sqrt(np.sum((pred_joint_coord_cam[j] - gt_joint_coord[j])**2)))
mpjpe_per_data_list.append(np.sqrt(np.sum((pred_joint_coord_cam[j] - gt_joint_coord[j])**2)))
## xy mpjpe
for j in range(self.joint_num*2):
if joint_valid[j]:
if gt_hand_type == 'right' or gt_hand_type == 'left':
mpjpe_sh_2d[j].append(np.sqrt(np.sum((pred_joint_coord_cam[j,:2] - gt_joint_coord[j,:2])**2)))
# continue
else:
mpjpe_ih_2d[j].append(np.sqrt(np.sum((pred_joint_coord_cam[j,:2] - gt_joint_coord[j,:2])**2)))
## depth mpjpe
for j in range(self.joint_num*2):
if joint_valid[j]:
if gt_hand_type == 'right' or gt_hand_type == 'left':
mpjpe_sh_3d[j].append(np.sqrt(np.sum((pred_joint_coord_cam[j,2] - gt_joint_coord[j,2])**2)))
# continue
else:
mpjpe_ih_3d[j].append(np.sqrt(np.sum((pred_joint_coord_cam[j,2] - gt_joint_coord[j,2])**2)))
vis_2d = False
if vis_2d:
img_path = data['img_path']
cvimg = cv2.imread(img_path, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
_img = cvimg[:,:,::-1].transpose(2,0,1)
vis_kps = pred_joint_coord_img.copy()
vis_kps_gt = gt_joint_img.copy()
vis_valid = joint_valid.copy()
capture = str(data['capture'])
cam = str(data['cam'])
frame = str(data['frame'])
filename = 'out_' + str(n) + '_' + gt_hand_type + '.jpg'
vis_keypoints(_img, vis_kps, vis_kps_gt, bbox, vis_valid, self.skeleton, filename)
print('vis 2d over')
vis_3d = False
if vis_3d:
filename = 'out_' + str(n) + '_3d.jpg'
vis_3d_cam = pred_joint_coord_cam.copy()
vis_3d_cam_left = pred_joint_coord_cam[self.joint_type['left']].copy()
vis_3d_cam_left[:,2] = pred_joint_coord_cam[self.joint_type['left'],2]
vis_3d_cam_right = pred_joint_coord_cam[self.joint_type['right']].copy()
vis_3d_cam_right[:,2] = pred_joint_coord_cam[self.joint_type['right'],2]
vis_3d = np.concatenate((vis_3d_cam_left, vis_3d_cam_right), axis= 0)
vis_3d_keypoints(vis_3d, joint_valid, self.skeleton, filename)
print('vis 3d over')
if hand_cls_cnt > 0:
handness_accuracy = acc_hand_cls / hand_cls_cnt
print('Handedness accuracy: ' + str(handness_accuracy))
if len(mrrpe) > 0:
mrrpe_num = sum(mrrpe)/len(mrrpe)
print('MRRPE: ' + str(mrrpe_num))
print()
if self.use_inter_hand_dataset is True and self.use_single_hand_dataset is True:
print('..................MPJPE FOR TOTAL HAND..................')
eval_summary = 'MPJPE for each joint: \n'
for j in range(self.joint_num*2):
tot_err_j = np.mean(np.concatenate((np.stack(mpjpe_sh[j]), np.stack(mpjpe_ih[j]))))
joint_name = self.skeleton[j]['name']
eval_summary += (joint_name + ': %.2f, ' % tot_err_j)
tot_err.append(tot_err_j)
print(eval_summary)
tot_err_mean = np.mean(tot_err)
print('MPJPE for all hand sequences: %.2f' % (tot_err_mean))
mpjpe_dict['total'] = tot_err_mean
print()
if self.use_single_hand_dataset is True:
print('..................MPJPE FOR SINGLE HAND..................')
## xyz
eval_summary = 'MPJPE for each joint: \n'
for j in range(self.joint_num*2):
mpjpe_sh[j] = np.mean(np.stack(mpjpe_sh[j]))
joint_name = self.skeleton[j]['name']
eval_summary += (joint_name + ': %.2f, ' % mpjpe_sh[j])
print(eval_summary)
mpjpe_sh_mean = np.mean(mpjpe_sh)
print('MPJPE for single hand sequences: %.2f' % (mpjpe_sh_mean))
mpjpe_dict['single_hand_total'] = mpjpe_sh_mean
print()
## xy
eval_summary_2d = 'MPJPE for each joint 2d: \n'
for j in range(self.joint_num*2):
mpjpe_sh_2d[j] = np.mean(np.stack(mpjpe_sh_2d[j]))
joint_name = self.skeleton[j]['name']
eval_summary_2d += (joint_name + ': %.2f, ' % mpjpe_sh_2d[j])
print(eval_summary_2d)
mpjpe_sh_2d_mean = np.mean(mpjpe_sh_2d)
print('MPJPE for single hand sequences 2d: %.2f' % (mpjpe_sh_2d_mean))
mpjpe_dict['single_hand_2d'] = mpjpe_sh_2d_mean
print()
## z
eval_summary_3d = 'MPJPE for each joint depth: \n'
for j in range(self.joint_num*2):
mpjpe_sh_3d[j] = np.mean(np.stack(mpjpe_sh_3d[j]))
joint_name = self.skeleton[j]['name']
eval_summary_3d += (joint_name + ': %.2f, ' % mpjpe_sh_3d[j])
print(eval_summary_3d)
mpjpe_sh_3d_mean = np.mean(mpjpe_sh_3d)
print('MPJPE for single hand sequences 3d: %.2f' % (mpjpe_sh_3d_mean))
mpjpe_dict['single_hand_depth'] = mpjpe_sh_3d_mean
print()
if self.use_inter_hand_dataset is True:
print('..................MPJPE FOR INTER HAND..................')
## xyz
eval_summary = 'MPJPE for each joint: \n'
for j in range(self.joint_num*2):
mpjpe_ih[j] = np.mean(np.stack(mpjpe_ih[j]))
joint_name = self.skeleton[j]['name']
eval_summary += (joint_name + ': %.2f, ' % mpjpe_ih[j])
print(eval_summary)
mpjpe_ih_mean = np.mean(mpjpe_ih)
print('MPJPE for interacting hand sequences: %.2f' % (mpjpe_ih_mean))
mpjpe_dict['inter_hand_total'] = mpjpe_ih_mean
print()
## xy
eval_summary_2d = 'MPJPE for each joint 2d: \n'
for j in range(self.joint_num*2):
mpjpe_ih_2d[j] = np.mean(np.stack(mpjpe_ih_2d[j]))
joint_name = self.skeleton[j]['name']
eval_summary_2d += (joint_name + ': %.2f, ' % mpjpe_ih_2d[j])
print(eval_summary_2d)
mpjpe_ih_2d_mean = np.mean(mpjpe_ih_2d)
print('MPJPE for interacting hand sequences 2d: %.2f' % (mpjpe_ih_2d_mean))
mpjpe_dict['inter_hand_2d'] = mpjpe_ih_2d_mean
print()
## z
eval_summary_3d = 'MPJPE for each joint depth: \n'
for j in range(self.joint_num*2):
mpjpe_ih_3d[j] = np.mean(np.stack(mpjpe_ih_3d[j]))
joint_name = self.skeleton[j]['name']
eval_summary_3d += (joint_name + ': %.2f, ' % mpjpe_ih_3d[j])
print(eval_summary_3d)
mpjpe_ih_3d_mean = np.mean(mpjpe_ih_3d)
print('MPJPE for interacting hand sequences 3d: %.2f' % (mpjpe_ih_3d_mean))
mpjpe_dict['inter_hand_depth'] = mpjpe_ih_3d_mean
print()
if hand_cls_cnt > 0 and len(mrrpe) > 0:
return mpjpe_dict, handness_accuracy, mrrpe_num
else:
return mpjpe_dict, None, None