forked from NVlabs/BundleSDF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbundlesdf.py
794 lines (641 loc) · 30.1 KB
/
bundlesdf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
from Utils import *
from nerf_runner import *
from tool import *
code_dir = os.path.dirname(os.path.realpath(__file__))
sys.path.append(f'{code_dir}/BundleTrack/build')
import my_cpp
from gui import *
from BundleTrack.scripts.data_reader import *
from Utils import *
from loftr_wrapper import LoftrRunner
import multiprocessing,threading
try:
multiprocessing.set_start_method('spawn')
except:
pass
def run_gui(gui_dict, gui_lock):
print("GUI started")
with gui_lock:
gui = BundleSdfGui(img_height=200)
gui_dict['started'] = True
local_dict = {}
while dpg.is_dearpygui_running():
with gui_lock:
if gui_dict['join']:
break
for k in ['mesh','color','mask','ob_in_cam','id_str','K','n_keyframe','nerf_num_frames']:
if k in gui_dict:
local_dict[k] = gui_dict[k]
del gui_dict[k]
if 'nerf_num_frames' in local_dict:
gui.set_nerf_num_frames(local_dict['nerf_num_frames'])
if 'mesh' in local_dict:
logging.info(f"mesh V: {local_dict['mesh'].vertices.shape}")
gui.update_mesh(local_dict['mesh'])
if 'color' in local_dict:
gui.update_frame(rgb=local_dict['color'], mask=local_dict['mask'], ob_in_cam=local_dict['ob_in_cam'], id_str=local_dict['id_str'], K=local_dict['K'], n_keyframe=local_dict['n_keyframe'])
local_dict = {}
dpg.render_dearpygui_frame()
time.sleep(0.03)
dpg.destroy_context()
def run_nerf(p_dict, kf_to_nerf_list, lock, cfg_nerf, translation, sc_factor, start_nerf_keyframes, use_gui, gui_lock, gui_dict, debug_dir):
vox_res = 0.01
nerf_num_frames = 0
cnt_nerf = -1
rgbs_all = []
depths_all = []
normal_maps_all = []
masks_all = []
occ_masks_all = []
prev_pcd_real_scale = None
tf_normalize = None
if translation is not None:
tf_normalize = np.eye(4)
tf_normalize[:3,3] = translation
tf1 = np.eye(4)
tf1[:3,:3] *= sc_factor
tf_normalize = tf1@tf_normalize
cfg_nerf['sc_factor'] = float(sc_factor)
cfg_nerf['translation'] = translation
with lock:
SPDLOG = p_dict['SPDLOG']
while 1:
with lock:
join = p_dict['join']
if join:
break
skip = False
with lock:
if cnt_nerf==-1 and len(kf_to_nerf_list)<start_nerf_keyframes:
skip = True
p_dict['running'] = False
else:
if len(kf_to_nerf_list)>0:
p_dict['running'] = True
frame_id = p_dict['frame_id']
cam_in_obs = p_dict['cam_in_obs'].copy()
rgbs = []
depths = []
normal_maps = []
masks = []
occ_masks = []
for f in kf_to_nerf_list:
rgbs.append(f['rgb'])
depths.append(f['depth'])
masks.append(f['mask'])
if f['normal_map'] is not None:
normal_maps.append(f['normal_map'])
if f['occ_mask'] is not None:
occ_masks.append(f['occ_mask'])
K = p_dict['K']
nerf_num_frames += len(rgbs)
p_dict['nerf_num_frames'] = nerf_num_frames
kf_to_nerf_list[:] = []
if use_gui:
with gui_lock:
gui_dict['nerf_num_frames'] = nerf_num_frames
else:
skip = True
if skip:
time.sleep(0.01)
continue
cnt_nerf += 1
rgbs_all += list(rgbs)
depths_all += list(depths)
masks_all += list(masks)
if normal_maps is not None:
normal_maps_all += list(normal_maps)
if occ_masks is not None:
occ_masks_all += list(occ_masks)
out_dir = f"{debug_dir}/{frame_id}/nerf"
logging.info(f"out_dir: {out_dir}")
os.makedirs(out_dir, exist_ok=True)
os.system(f"rm -rf {cfg_nerf['datadir']} && mkdir -p {cfg_nerf['datadir']}")
glcam_in_obs = cam_in_obs@glcam_in_cvcam
if cfg_nerf['continual']:
if cnt_nerf==0:
if translation is None:
sc_factor,translation,pcd_real_scale, pcd_normalized = compute_scene_bounds(None,glcam_in_obs,K,use_mask=True,base_dir=cfg_nerf['save_dir'],rgbs=np.array(rgbs_all),depths=np.array(depths_all),masks=np.array(masks_all), eps=cfg_nerf['dbscan_eps'], min_samples=cfg_nerf['dbscan_eps_min_samples'])
sc_factor *= 0.7 # Ensure whole object within bound
cfg_nerf['sc_factor'] = float(sc_factor)
cfg_nerf['translation'] = translation
tf_normalize = np.eye(4)
tf_normalize[:3,3] = translation
tf1 = np.eye(4)
tf1[:3,:3] *= sc_factor
tf_normalize = tf1@tf_normalize
pcd_all = pcd_real_scale
else:
pcd_all = prev_pcd_real_scale
for i in range(len(rgbs)):
pts, colors = compute_scene_bounds_worker(None,K,glcam_in_obs[len(glcam_in_obs)-len(rgbs)+i],use_mask=True,rgb=rgbs[i],depth=depths[i],mask=masks[i])
pcd_all += toOpen3dCloud(pts, colors)
pcd_all = pcd_all.voxel_down_sample(vox_res)
_,keep_mask = find_biggest_cluster(np.asarray(pcd_all.points), eps=cfg_nerf['dbscan_eps'], min_samples=cfg_nerf['dbscan_eps_min_samples'])
keep_ids = np.arange(len(np.asarray(pcd_all.points)))[keep_mask]
pcd_all = pcd_all.select_by_index(keep_ids)
########## Clear memory
rgbs_all = []
depths_all = []
normal_maps_all = []
masks_all = []
occ_masks_all = []
pcd_normalized = copy.deepcopy(pcd_all)
pcd_normalized.transform(tf_normalize)
if normal_maps is not None and len(normal_maps)>0:
normal_maps = np.array(normal_maps)
else:
normal_maps = None
rgbs,depths,masks,normal_maps,poses = preprocess_data(np.array(rgbs),np.array(depths),np.array(masks),normal_maps=normal_maps,poses=glcam_in_obs,sc_factor=cfg_nerf['sc_factor'],translation=cfg_nerf['translation'])
else:
logging.info(f"compute_scene_bounds, latest nerf frame {frame_id}")
sc_factor,translation,pcd_real_scale, pcd_normalized = compute_scene_bounds(None,glcam_in_obs,K,use_mask=True,base_dir=cfg_nerf['save_dir'],rgbs=np.array(rgbs_all),depths=np.array(depths_all),masks=np.array(masks_all), eps=cfg_nerf['dbscan_eps'], min_samples=cfg_nerf['dbscan_eps_min_samples'])
cfg_nerf['sc_factor'] = float(sc_factor)
cfg_nerf['translation'] = translation
if normal_maps_all is not None and len(normal_maps_all)>0:
normal_maps = np.array(normal_maps_all)
else:
normal_maps = None
logging.info(f"preprocess_data, latest nerf frame {frame_id}")
rgbs,depths,masks,normal_maps,poses = preprocess_data(np.array(rgbs_all),np.array(depths_all),np.array(masks_all),normal_maps=normal_maps,poses=glcam_in_obs,sc_factor=cfg_nerf['sc_factor'],translation=cfg_nerf['translation'])
# cfg_nerf['sampled_frame_ids'] = np.arange(len(rgbs_all))
if SPDLOG>=2:
np.savetxt(f"{cfg_nerf['save_dir']}/trainval_poses.txt",glcam_in_obs.reshape(-1,4))
np.savetxt(f"{debug_dir}/{frame_id}/poses_before_nerf.txt",np.array(cam_in_obs).reshape(-1,4))
if len(occ_masks_all)>0:
if cfg_nerf['continual']:
occ_masks = np.array(occ_masks)
else:
occ_masks = np.array(occ_masks_all)
else:
occ_masks = None
if cnt_nerf==0:
logging.info(f"First nerf run, create Runner, latest nerf frame {frame_id}")
nerf = NerfRunner(cfg_nerf,rgbs,depths=depths,masks=masks,normal_maps=normal_maps,occ_masks=occ_masks,poses=poses,K=K,build_octree_pcd=pcd_normalized)
else:
if cfg_nerf['continual']:
logging.info(f"add_new_frames, latest nerf frame {frame_id}")
nerf.add_new_frames(rgbs,depths,masks,normal_maps,poses,occ_masks=occ_masks, new_pcd=pcd_normalized, reuse_weights=False)
else:
nerf = NerfRunner(cfg_nerf,rgbs,depths=depths,masks=masks,normal_maps=normal_maps,occ_masks=occ_masks,poses=poses,K=K,build_octree_pcd=pcd_normalized)
logging.info(f"Start training, latest nerf frame {frame_id}")
nerf.train()
logging.info(f"Training done, latest nerf frame {frame_id}")
optimized_cvcam_in_obs,offset = get_optimized_poses_in_real_world(poses,nerf.models['pose_array'],cfg_nerf['sc_factor'],cfg_nerf['translation'])
logging.info("Getting mesh")
mesh = nerf.extract_mesh(isolevel=0,voxel_size=cfg_nerf['mesh_resolution'])
mesh = mesh_to_real_world(mesh, pose_offset=offset, translation=nerf.cfg['translation'], sc_factor=nerf.cfg['sc_factor'])
with lock:
p_dict['optimized_cvcam_in_obs'] = optimized_cvcam_in_obs
p_dict['running'] = False
# p_dict['nerf_last'] = nerf #!NOTE not pickable
p_dict['mesh'] = mesh
logging.info(f"nerf done at frame {frame_id}")
if cfg_nerf['continual']:
prev_pcd_real_scale = pcd_all.voxel_down_sample(vox_res)
####### Log
if SPDLOG>=2:
os.system(f"cp -r {cfg_nerf['save_dir']}/image_step_*.png {out_dir}/")
with open(f"{out_dir}/config.yml",'w') as ff:
tmp = copy.deepcopy(cfg_nerf)
for k in tmp.keys():
if isinstance(tmp[k],np.ndarray):
tmp[k] = tmp[k].tolist()
yaml.dump(tmp,ff)
shutil.copy(f"{out_dir}/config.yml",f"{cfg_nerf['save_dir']}/")
np.savetxt(f"{debug_dir}/{frame_id}/poses_after_nerf.txt",np.array(optimized_cvcam_in_obs).reshape(-1,4))
mesh.export(f"{cfg_nerf['save_dir']}/mesh_real_world.obj")
os.system(f"rm -rf {cfg_nerf['save_dir']}/step_*_mesh_real_world.obj {cfg_nerf['save_dir']}/*frame*ray*.ply && mv {cfg_nerf['save_dir']}/* {out_dir}/")
class BundleSdf:
def __init__(self, cfg_track_dir=f"{code_dir}/config_ho3d.yml", cfg_nerf_dir=f'{code_dir}/config.yml', start_nerf_keyframes=10, translation=None, sc_factor=None, use_gui=False):
with open(cfg_track_dir,'r') as ff:
self.cfg_track = yaml.load(ff)
self.debug_dir = self.cfg_track["debug_dir"]
self.SPDLOG = self.cfg_track["SPDLOG"]
self.start_nerf_keyframes = start_nerf_keyframes
self.use_gui = use_gui
self.translation = None
self.sc_factor = None
if sc_factor is not None:
self.translation = translation
self.sc_factor = sc_factor
code_dir = os.path.dirname(os.path.realpath(__file__))
with open(cfg_nerf_dir,'r') as ff:
self.cfg_nerf = yaml.load(ff)
self.cfg_nerf['notes'] = ''
self.cfg_nerf['bounding_box'] = np.array(self.cfg_nerf['bounding_box']).reshape(2,3)
self.manager = multiprocessing.Manager()
if self.use_gui:
self.gui_lock = multiprocessing.Lock()
self.gui_dict = self.manager.dict()
self.gui_dict['join'] = False
self.gui_dict['started'] = False
self.gui_worker = multiprocessing.Process(target=run_gui, args=(self.gui_dict, self.gui_lock))
self.gui_worker.start()
else:
self.gui_lock = None
self.gui_dict = None
self.p_dict = self.manager.dict()
self.kf_to_nerf_list = self.manager.list()
self.lock = multiprocessing.Lock()
self.p_dict['running'] = False
self.p_dict['join'] = False
self.p_dict['nerf_num_frames'] = 0
self.p_dict['SPDLOG'] = self.SPDLOG
self.p_nerf = multiprocessing.Process(target=run_nerf, args=(self.p_dict, self.kf_to_nerf_list, self.lock, self.cfg_nerf, self.translation, self.sc_factor, start_nerf_keyframes, self.use_gui, self.gui_lock, self.gui_dict, self.debug_dir))
self.p_nerf.start()
# self.p_dict = {}
# self.lock = threading.Lock()
# self.p_dict['running'] = False
# self.p_dict['join'] = False
# self.p_nerf = threading.Thread(target=self.run_nerf, args=(self.p_dict, self.lock))
# self.p_nerf.start()
yml = my_cpp.YamlLoadFile(cfg_track_dir)
self.bundler = my_cpp.Bundler(yml)
self.loftr = LoftrRunner()
self.cnt = -1
self.K = None
self.mesh = None
def on_finish(self):
if self.use_gui:
with self.gui_lock:
self.gui_dict['join'] = True
self.gui_worker.join()
with self.lock:
self.p_dict['join'] = True
self.p_nerf.join()
with self.lock:
if self.p_dict['running']==False and 'optimized_cvcam_in_obs' in self.p_dict:
for i_f in range(len(self.p_dict['optimized_cvcam_in_obs'])):
self.bundler._keyframes[i_f]._pose_in_model = self.p_dict['optimized_cvcam_in_obs'][i_f]
self.bundler._keyframes[i_f]._nerfed = True
del self.p_dict['optimized_cvcam_in_obs']
def make_frame(self, color, depth, K, id_str, mask=None, occ_mask=None, pose_in_model=np.eye(4)):
H,W = color.shape[:2]
roi = [0,W-1,0,H-1]
frame = my_cpp.Frame(color,depth,roi,pose_in_model,self.cnt,id_str,K,self.bundler.yml)
if mask is not None:
frame._fg_mask = my_cpp.cvMat(mask)
if occ_mask is not None:
frame._occ_mask = my_cpp.cvMat(occ_mask)
return frame
def find_corres(self, frame_pairs):
logging.info(f"frame_pairs: {len(frame_pairs)}")
is_match_ref = len(frame_pairs)==1 and frame_pairs[0][0]._ref_frame_id==frame_pairs[0][1]._id and self.bundler._newframe==frame_pairs[0][0]
imgs, tfs, query_pairs = self.bundler._fm.getProcessedImagePairs(frame_pairs)
imgs = np.array([np.array(img) for img in imgs])
if len(query_pairs)==0:
return
corres = self.loftr.predict(rgbAs=imgs[::2], rgbBs=imgs[1::2])
for i_pair in range(len(query_pairs)):
cur_corres = corres[i_pair][:,:4]
tfA = np.array(tfs[i_pair*2])
tfB = np.array(tfs[i_pair*2+1])
cur_corres[:,:2] = transform_pts(cur_corres[:,:2], np.linalg.inv(tfA))
cur_corres[:,2:4] = transform_pts(cur_corres[:,2:4], np.linalg.inv(tfB))
self.bundler._fm._raw_matches[query_pairs[i_pair]] = cur_corres.round().astype(np.uint16)
min_match_with_ref = self.cfg_track["feature_corres"]["min_match_with_ref"]
if is_match_ref and len(self.bundler._fm._raw_matches[frame_pairs[0]])<min_match_with_ref:
self.bundler._fm._raw_matches[frame_pairs[0]] = []
self.bundler._newframe._status = my_cpp.Frame.FAIL
logging.info(f'frame {self.bundler._newframe._id_str} mark FAIL, due to no matching')
return
self.bundler._fm.rawMatchesToCorres(query_pairs)
for pair in query_pairs:
self.bundler._fm.vizCorresBetween(pair[0], pair[1], 'before_ransac')
self.bundler._fm.runRansacMultiPairGPU(query_pairs)
for pair in query_pairs:
self.bundler._fm.vizCorresBetween(pair[0], pair[1], 'after_ransac')
def process_new_frame(self, frame):
logging.info(f"process frame {frame._id_str}")
self.bundler._newframe = frame
os.makedirs(self.debug_dir, exist_ok=True)
if frame._id>0:
ref_frame = self.bundler._frames[list(self.bundler._frames.keys())[-1]]
frame._ref_frame_id = ref_frame._id
frame._pose_in_model = ref_frame._pose_in_model
else:
self.bundler._firstframe = frame
frame.invalidatePixelsByMask(frame._fg_mask)
if frame._id==0 and np.abs(np.array(frame._pose_in_model)-np.eye(4)).max()<=1e-4:
frame.setNewInitCoordinate()
n_fg = (np.array(frame._fg_mask)>0).sum()
if n_fg<100:
logging.info(f"Frame {frame._id_str} cloud is empty, marked FAIL, roi={n_fg}")
frame._status = my_cpp.Frame.FAIL;
self.bundler.forgetFrame(frame)
return
if self.cfg_track["depth_processing"]["denoise_cloud"]:
frame.pointCloudDenoise()
n_valid = frame.countValidPoints()
n_valid_first = self.bundler._firstframe.countValidPoints()
if n_valid<n_valid_first/40.0:
logging.info(f"frame _cloud_down points#: {n_valid} too small compared to first frame points# {n_valid_first}, mark as FAIL")
frame._status = my_cpp.Frame.FAIL
self.bundler.forgetFrame(frame)
return
if frame._id==0:
self.bundler.checkAndAddKeyframe(frame) # First frame is always keyframe
self.bundler._frames[frame._id] = frame
return
min_match_with_ref = self.cfg_track["feature_corres"]["min_match_with_ref"]
self.find_corres([(frame, ref_frame)])
matches = self.bundler._fm._matches[(frame, ref_frame)]
if frame._status==my_cpp.Frame.FAIL:
logging.info(f"find corres fail, mark {frame._id_str} as FAIL")
self.bundler.forgetFrame(frame)
return
matches = self.bundler._fm._matches[(frame, ref_frame)]
if len(matches)<min_match_with_ref:
visibles = []
for kf in self.bundler._keyframes:
visible = my_cpp.computeCovisibility(frame, kf)
visibles.append(visible)
visibles = np.array(visibles)
ids = np.argsort(visibles)[::-1]
found = False
pdb.set_trace()
for id in ids:
kf = self.bundler._keyframes[id]
logging.info(f"trying new ref frame {kf._id_str}")
ref_frame = kf
frame._ref_frame_id = kf._id
frame._pose_in_model = kf._pose_in_model
self.find_corres([(frame, ref_frame)])
# self.bundler._fm.findCorres(frame, ref_frame)
if len(self.bundler._fm._matches[(frame,kf)])>=min_match_with_ref:
logging.info(f"re-choose new ref frame to {kf._id_str}")
found = True
break
if not found:
frame._status = my_cpp.Frame.FAIL
logging.info(f"frame {frame._id_str} has not suitable ref_frame, mark as FAIL")
self.bundler.forgetFrame(frame)
return
logging.info(f"frame {frame._id_str} pose update before\n{frame._pose_in_model.round(3)}")
offset = self.bundler._fm.procrustesByCorrespondence(frame, ref_frame)
frame._pose_in_model = offset@frame._pose_in_model
logging.info(f"frame {frame._id_str} pose update after\n{frame._pose_in_model.round(3)}")
window_size = self.cfg_track["bundle"]["window_size"]
if len(self.bundler._frames)-len(self.bundler._keyframes)>window_size:
for k in self.bundler._frames:
f = self.bundler._frames[k]
isforget = self.bundler.forgetFrame(f)
if isforget:
logging.info(f"exceed window size, forget frame {f._id_str}")
break
self.bundler._frames[frame._id] = frame
self.bundler.selectKeyFramesForBA()
local_frames = self.bundler._local_frames
pairs = self.bundler.getFeatureMatchPairs(self.bundler._local_frames)
self.find_corres(pairs)
if frame._status==my_cpp.Frame.FAIL:
self.bundler.forgetFrame(frame)
return
find_matches = False
self.bundler.optimizeGPU(local_frames, find_matches)
if frame._status==my_cpp.Frame.FAIL:
self.bundler.forgetFrame(frame)
return
self.bundler.checkAndAddKeyframe(frame)
def run(self, color, depth, K, id_str, mask=None, occ_mask=None, pose_in_model=np.eye(4)):
self.cnt += 1
if self.K is None:
self.K = K
with self.lock:
self.p_dict['K'] = self.K
if self.use_gui:
while 1:
with self.gui_lock:
started = self.gui_dict['started']
if not started:
time.sleep(1)
logging.info("Waiting for GUI")
continue
break
H,W = color.shape[:2]
percentile = self.cfg_track['depth_processing']["percentile"]
if percentile<100: # Denoise
logging.info("percentile denoise start")
valid = (depth>=0.1) & (mask>0)
thres = np.percentile(depth[valid], percentile)
depth[depth>=thres] = 0
logging.info("percentile denoise done")
frame = self.make_frame(color, depth, K, id_str, mask, occ_mask, pose_in_model)
os.makedirs(f"{self.debug_dir}/{frame._id_str}", exist_ok=True)
logging.info(f"processNewFrame start {frame._id_str}")
# self.bundler.processNewFrame(frame)
self.process_new_frame(frame)
logging.info(f"processNewFrame done {frame._id_str}")
if self.bundler._keyframes[-1]==frame:
logging.info(f"{frame._id_str} prepare data for nerf")
with self.lock:
self.p_dict['frame_id'] = frame._id_str
self.p_dict['running'] = True
self.kf_to_nerf_list.append({
'rgb': np.array(frame._color).reshape(H,W,3)[...,::-1].copy(),
'depth': np.array(frame._depth).reshape(H,W).copy(),
'mask': np.array(frame._fg_mask).reshape(H,W).copy(),
# 'occ_mask': occ_mask.reshape(H,W),
# 'normal_map': np.array(frame._normal_map).copy(),
'occ_mask': None,
'normal_map': None,
})
cam_in_obs = []
for f in self.bundler._keyframes:
cam_in_obs.append(np.array(f._pose_in_model).copy())
self.p_dict['cam_in_obs'] = np.array(cam_in_obs)
if self.SPDLOG>=2:
with open(f"{self.debug_dir}/{frame._id_str}/nerf_frames.txt",'w') as ff:
for f in self.bundler._keyframes:
ff.write(f"{f._id_str}\n")
############# Wait for sync
while 1:
with self.lock:
running = self.p_dict['running']
nerf_num_frames = self.p_dict['nerf_num_frames']
if not running:
break
if len(self.bundler._keyframes)-nerf_num_frames>=self.cfg_nerf['sync_max_delay']:
time.sleep(0.01)
# logging.info(f"wait for sync len(self.bundler._keyframes):{len(self.bundler._keyframes)}, nerf_num_frames:{nerf_num_frames}")
continue
break
rematch_after_nerf = self.cfg_track["feature_corres"]["rematch_after_nerf"]
logging.info(f"rematch_after_nerf: {rematch_after_nerf}")
frames_large_update = []
with self.lock:
if 'optimized_cvcam_in_obs' in self.p_dict:
for i_f in range(len(self.p_dict['optimized_cvcam_in_obs'])):
if rematch_after_nerf:
trans_update = np.linalg.norm(self.p_dict['optimized_cvcam_in_obs'][i_f][:3,3]-self.bundler._keyframes[i_f]._pose_in_model[:3,3])
rot_update = geodesic_distance(self.p_dict['optimized_cvcam_in_obs'][i_f][:3,:3], self.bundler._keyframes[i_f]._pose_in_model[:3,:3])
if trans_update>=0.005 or rot_update>=5/180.0*np.pi:
frames_large_update.append(self.bundler._keyframes[i_f])
logging.info(f"{self.bundler._keyframes[i_f]._id_str}, trans_update={trans_update}, rot_update={rot_update}")
self.bundler._keyframes[i_f]._pose_in_model = self.p_dict['optimized_cvcam_in_obs'][i_f]
self.bundler._keyframes[i_f]._nerfed = True
logging.info(f"synced pose from nerf, latest nerf frame {self.bundler._keyframes[len(self.p_dict['optimized_cvcam_in_obs'])-1]._id_str}")
del self.p_dict['optimized_cvcam_in_obs']
if self.use_gui:
with self.gui_lock:
if 'mesh' in self.p_dict:
self.gui_dict['mesh'] = self.p_dict['mesh']
del self.p_dict['mesh']
if rematch_after_nerf:
if len(frames_large_update)>0:
with self.lock:
nerf_num_frames = self.p_dict['nerf_num_frames']
logging.info(f"before matches keys: {len(self.bundler._fm._matches)}")
ks = list(self.bundler._fm._matches.keys())
for k in ks:
if k[0] in frames_large_update or k[1] in frames_large_update:
del self.bundler._fm._matches[k]
logging.info(f"Delete match between {k[0]._id_str} and {k[1]._id_str}")
logging.info(f"after matches keys: {len(self.bundler._fm._matches)}")
self.bundler.saveNewframeResult()
if self.SPDLOG>=2 and occ_mask is not None:
os.makedirs(f'{self.debug_dir}/occ_mask/', exist_ok=True)
cv2.imwrite(f'{self.debug_dir}/occ_mask/{frame._id_str}.png', occ_mask)
if self.use_gui:
ob_in_cam = np.linalg.inv(frame._pose_in_model)
with self.gui_lock:
self.gui_dict['color'] = color[...,::-1]
self.gui_dict['mask'] = mask
self.gui_dict['ob_in_cam'] = ob_in_cam
self.gui_dict['id_str'] = frame._id_str
self.gui_dict['K'] = self.K
self.gui_dict['n_keyframe'] = len(self.bundler._keyframes)
def run_global_nerf(self, reader=None, get_texture=False, tex_res=1024):
'''
@reader: data reader, sometimes we want to use the full resolution raw image
'''
self.K = np.loadtxt(f'{self.debug_dir}/cam_K.txt').reshape(3,3)
tmp = sorted(glob.glob(f"{self.debug_dir}/ob_in_cam/*"))
last_stamp = os.path.basename(tmp[-1]).replace('.txt','')
logging.info(f'last_stamp {last_stamp}')
keyframes = yaml.load(open(f'{self.debug_dir}/{last_stamp}/keyframes.yml','r'))
logging.info(f"keyframes#: {len(keyframes)}")
keys = list(keyframes.keys())
if len(keyframes)>self.cfg_nerf['n_train_image']:
keys = [keys[0]] + list(np.random.choice(keys, self.cfg_nerf['n_train_image'], replace=False))
keys = list(set(keys))
logging.info(f"frame_ids too large, select subset num: {len(keys)}")
frame_ids = []
for k in keys:
frame_ids.append(k.replace('keyframe_',''))
cam_in_obs = []
for k in keys:
cam_in_ob = np.array(keyframes[k]['cam_in_ob']).reshape(4,4)
cam_in_obs.append(cam_in_ob)
cam_in_obs = np.array(cam_in_obs)
out_dir = f"{self.debug_dir}/final/nerf"
os.system(f"rm -rf {out_dir} && mkdir -p {out_dir}")
os.system(f'rm -rf {self.debug_dir}/final/used_rgbs/ && mkdir -p {self.debug_dir}/final/used_rgbs/')
rgbs = []
depths = []
normal_maps = []
masks = []
occ_masks = []
for frame_id in frame_ids:
if reader is not None:
self.K = reader.K.copy()
id = reader.id_strs.index(frame_id)
rgbs.append(reader.get_color(id))
depths.append(reader.get_depth(id))
masks.append(reader.get_mask(id))
else:
self.cfg_nerf['down_scale_ratio'] = 1 # Images have been downscaled in tracking outputs
rgb_file = f"{self.debug_dir}/color_segmented/{frame_id}.png"
shutil.copy(rgb_file, f'{self.debug_dir}/final/used_rgbs/')
rgb = imageio.imread(rgb_file)
depth = cv2.imread(rgb_file.replace('color_segmented','depth_filtered'),-1)/1e3
mask = cv2.imread(rgb_file.replace('color_segmented','mask'),-1)
rgbs.append(rgb)
depths.append(depth)
masks.append(mask)
glcam_in_obs = cam_in_obs@glcam_in_cvcam
self.cfg_nerf['sc_factor'] = None
self.cfg_nerf['translation'] = None
######### Reuse normalization
files = sorted(glob.glob(f"{self.debug_dir}/**/nerf/config.yml", recursive=True))
if len(files)>0:
tmp = yaml.load(open(files[-1],'r'))
self.cfg_nerf['sc_factor'] = float(tmp['sc_factor'])
self.cfg_nerf['translation'] = np.array(tmp['translation'])
sc_factor,translation,pcd_real_scale, pcd_normalized = compute_scene_bounds(None,glcam_in_obs,self.K,use_mask=True,base_dir=self.cfg_nerf['save_dir'],rgbs=np.array(rgbs),depths=np.array(depths),masks=np.array(masks), cluster=True, eps=0.01, min_samples=5, sc_factor=self.cfg_nerf['sc_factor'], translation_cvcam=self.cfg_nerf['translation'])
self.cfg_nerf['sc_factor'] = float(sc_factor)
self.cfg_nerf['translation'] = translation
if normal_maps is not None and len(normal_maps)>0:
normal_maps = np.array(normal_maps)
else:
normal_maps = None
rgbs_raw = np.array(rgbs).copy()
rgbs,depths,masks,normal_maps,poses = preprocess_data(np.array(rgbs),depths=np.array(depths),masks=np.array(masks),normal_maps=normal_maps,poses=glcam_in_obs,sc_factor=self.cfg_nerf['sc_factor'],translation=self.cfg_nerf['translation'])
self.cfg_nerf['sampled_frame_ids'] = np.arange(len(rgbs))
np.savetxt(f"{self.cfg_nerf['save_dir']}/trainval_poses.txt",glcam_in_obs.reshape(-1,4))
if len(occ_masks)>0:
occ_masks = np.array(occ_masks)
else:
occ_masks = None
nerf = NerfRunner(self.cfg_nerf,rgbs,depths=depths,masks=masks,normal_maps=normal_maps,occ_masks=occ_masks,poses=poses,K=self.K,build_octree_pcd=pcd_normalized)
print("Start training")
nerf.train()
optimized_cvcam_in_obs,offset = get_optimized_poses_in_real_world(poses,nerf.models['pose_array'],self.cfg_nerf['sc_factor'],self.cfg_nerf['translation'])
####### Log
os.system(f"cp -r {self.cfg_nerf['save_dir']}/image_step_*.png {out_dir}/")
with open(f"{out_dir}/config.yml",'w') as ff:
tmp = copy.deepcopy(self.cfg_nerf)
for k in tmp.keys():
if isinstance(tmp[k],np.ndarray):
tmp[k] = tmp[k].tolist()
yaml.dump(tmp,ff)
shutil.copy(f"{out_dir}/config.yml",f"{self.cfg_nerf['save_dir']}/")
os.system(f"mv {self.cfg_nerf['save_dir']}/* {out_dir}/ && rm -rf {out_dir}/step_*_mesh_real_world.obj {out_dir}/*frame*ray*.ply")
torch.cuda.empty_cache()
np.savetxt(f"{self.debug_dir}/{frame_id}/poses_after_nerf.txt",np.array(optimized_cvcam_in_obs).reshape(-1,4))
# mesh_files = sorted(glob.glob(f"{self.debug_dir}/final/nerf/step_*_mesh_normalized_space.obj"))
# mesh = trimesh.load(mesh_files[-1])
mesh,sigma,query_pts = nerf.extract_mesh(voxel_size=self.cfg_nerf['mesh_resolution'],isolevel=0, return_sigma=True)
mesh.merge_vertices()
ms = trimesh_split(mesh, min_edge=100)
largest_size = 0
largest = None
for m in ms:
# mean = m.vertices.mean(axis=0)
# if np.linalg.norm(mean)>=0.1*nerf.cfg['sc_factor']:
# continue
if m.vertices.shape[0]>largest_size:
largest_size = m.vertices.shape[0]
largest = m
mesh = largest
mesh.export(f'{self.debug_dir}/mesh_cleaned.obj')
if get_texture:
mesh = nerf.mesh_texture_from_train_images(mesh, rgbs_raw=rgbs_raw, train_texture=False, tex_res=tex_res)
mesh = mesh_to_real_world(mesh, pose_offset=offset, translation=self.cfg_nerf['translation'], sc_factor=self.cfg_nerf['sc_factor'])
mesh.export(f'{self.debug_dir}/textured_mesh.obj')
if __name__=="__main__":
set_seed(0)
torch.set_default_tensor_type('torch.cuda.FloatTensor')
cfg_nerf = yaml.load(open(f"{code_dir}/BundleTrack/config_ho3d.yml",'r'))
cfg_nerf['data_dir'] = '/mnt/9a72c439-d0a7-45e8-8d20-d7a235d02763/DATASET/HO3D_v3/evaluation/MPM13'
cfg_nerf['SPDLOG'] = 1
cfg_track_dir = '/tmp/config.yml'
yaml.dump(cfg_nerf, open(cfg_track_dir,'w'))
tracker = BundleSdf(cfg_track_dir=cfg_track_dir)
reader = Ho3dReader(tracker.bundler.yml["data_dir"].Scalar())
os.system(f"rm -rf {tracker.debug_dir} && mkdir -p {tracker.debug_dir}")
for i,color_file in enumerate(reader.color_files):
color = cv2.imread(color_file)
depth = reader.get_depth(i)
id_str = reader.id_strs[i]
occ_mask = reader.get_occ_mask(i)
tracker.run(color, depth, reader.K, id_str, occ_mask=occ_mask)
print("Done")