forked from NVlabs/BundleSDF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.yml
102 lines (96 loc) · 2.61 KB
/
config.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
notes: ''
n_step: 500
netdepth: 8
netwidth: 256
netdepth_fine: 8
netwidth_fine: 256
N_rand: 2048 # Batch number of rays
first_frame_ray_in_batch: 0
lrate: 0.01
lrate_pose: 0.01
pose_optimize_start: 0
decay_rate: 0.1
chunk: 99999999999
netchunk: 6553600
no_batching: 0
amp: true
N_samples: 128 #number of coarse samples per ray
N_samples_around_depth: 64
N_importance: 0
N_importance_iter: 1
perturb: 1
use_viewdirs: 1
i_embed: 1 #set 1 for hashed embedding, 0 for default positional encoding, 2 for spherical; 3 for octree grid
i_embed_views: 2 #set 1 for hashed embedding, 0 for default positional encoding, 2 for spherical
multires: 8 #log2 of max freq for positional encoding (3D location)
multires_views: 3 #log2 of max freq for positional encoding (2D direction)
feature_grid_dim: 2
raw_noise_std: 0
white_bkgd: 0
gradient_max_norm: 0.1
gradient_pose_max_norm: 0.1
# logging/saving options
i_print: 999999
i_img: 999999
i_weights: 999999
i_mesh: 999999
i_nerf_normals: 999999
i_save_ray: 999999
i_pose: 999999
save_octree_clouds: True
finest_res: 128
base_res: 16
num_levels: 4
log2_hashmap_size: 22
datadir: /mnt/9a72c439-d0a7-45e8-8d20-d7a235d02763/github/bundlesdf/data/bundlesdf_bundlesdf_e03000196
n_train_image: 300
use_octree: 1
first_frame_weight: 10
denoise_depth_use_octree_cloud: true
octree_embed_base_voxel_size: 0.02
octree_smallest_voxel_size: 0.02 # This determines the smallest feature vox size
octree_raytracing_voxel_size: 0.02
octree_dilate_size: 0.02 # meters
down_scale_ratio: 1
bounding_box: [[-1,-1,-1], [1,1,1]]
farthest_pose_sampling: 0 # Sampling train images. This replace uniform skip
use_mask: 1
dilate_mask_size: 0
rays_valid_depth_only: true
near: 0.1
far: 2
rgb_weight: 10
depth_weight: 0
trunc: 0.01 #length of the truncation region in meters
trunc_start: 0.01
sdf_lambda: 5
neg_trunc_ratio: 1 # -trunc distance ratio compared to +trunc
trunc_decay_type: ''
sdf_loss_type: l2
fs_weight: 100
empty_weight: 0.01
fs_rgb_weight: 0
trunc_weight: 6000
sparse_loss_weight: 0
tv_loss_weight: 0
frame_features: 0 #number of channels of the learnable per-frame features
optimize_poses: 1 #optimize a pose refinement for the initial poses
pose_reg_weight: 0
point_cloud_loss_weight: 0
point_cloud_loss_normal_weight: 0
eikonal_weight: 0
normal_loss_weight: 0
feature_reg_weight: 0.1
share_coarse_fine: 1
mode: sdf
fs_sdf: 0.001 # Uncertain free space
crop: 0
mesh_resolution: 0.005
max_trans: 0.02 # meters
max_rot: 20 # deg
continual: True
######### dbscan
dbscan_eps: 0.06
dbscan_eps_min_samples: 1
####### bundlenerf
sync_max_delay: 0 # 0 for strict sync