Classes and methods may have type parameters, written inside the
symbols <
and >
.
The body of a class and method may refer to the type parameters anywhere you would use other types (variable declarations, etc.).
class Node<T> {
Node<T>(T d, Node<T> n) { data = d; next = n; }
T data;
Node<T> next;
}
Parameter names don't matter, the following is equivalent.
class Node<Z> {
Node<Z>(Z d, Node<Z> n) { data = d; next = n; }
Z data;
Node<Z> next;
}
When using the class, choose a type argument for each parameter.
Here we choose Integer
for the parameter T
.
Node<Integer> n = new Node<Integer>(42, null);
Caveats:
-
You can't instantiate a generic with built-in types (e.g.
int
,boolean
). The following is an error:Node<int> n = new Node<int>(42, null);
-
You can't use
new
on a type parameter (e.g.new T()
). -
You can't call methods on things whose type is a type parameter such as
T
(e.g.data.foo()
).
An interface acts as an intermediary between data structures and algorithms.
An interface specifies some methods that are common to several data structures and that are needed by one or more algorithms.
Example: angles, degrees, and radians.
interface Angle<T> {
Angle sum(Angle other);
...
}
class Degree implements Angle<Degree> {
int degree;
Degree sum(Degree other) { return (degree + other.degree) % 360;
}
class Radian implements Angle<Radian> {
float radian;
Radian sum(Radian other) { ... }
}
class ComputationalGeometry {
void f(Angle<Float> a1, Angle<Float> a2) { ... }
// can't do
// new Angle<Float>(...)
//
// can do
// d1 = new Degree(...); d2 = new Degree(...);
// f(d1, d2);
}
An iterator represents a position within a sequence.
public interface Iterator<T> {
// The get() method returns the element at the current position.
// O(1)
T get();
// The set() method writes the element e into the current position
// of the sequence.
// O(1)
void set(T e);
// The advance() method moves the iterator to the next position.
// O(1)
void advance();
// Advance `n` times.
// O(n)
void advance(int n);
// The equals() method tests whether this iterator is at the same
// position as the other iterator.
// O(1)
boolean equals(Iterator<T> other);
// The clone() method creates a new iterator at the same position
// as this iterator.
// O(1)
Iterator<T> clone();
}
public static <E>
Iterator<E> find_first_if(Iterator<E> begin, Iterator<E> end,
Predicate<E> p) {
Iterator<E> i = begin.clone();
for (; !i.equals(end) && !p.test(i.get()); i.advance()) { }
return i;
}
public class LinkIterator<T> implements Iterator<T> {
Node<T> node;
LinkIterator(Node<T> p) { node = p; }
public T get() { return node.data; }
public void set(T x) { node.data = x; }
public void advance() { node = node.next; }
public void advance(int n) {
for (; n > 0; --n) {
advance();
}
}
public boolean equals(Iterator<T> other) {
return node == ((LinkIterator<T>)other).node;
}
public LinkIterator<T> clone() {
return new LinkIterator<T>(node);
}
}
public static <E>
boolean equal_ranges(Iterator<E> begin1, Iterator<E> end1,
Iterator<E> begin2, Iterator<E> end2)
{ ... }
public static <E>
boolean equal_ranges(Iterator<E> begin1, Iterator<E> end1,
Iterator<E> begin2, Iterator<E> end2) {
Iterator<E> i = begin1.clone(), j = begin2.clone();
for (; ! i.equals(end1) && ! j.equals(end2); i.advance(), j.advance())
if (! i.get().equals(j.get()))
return false;
return i.equals(end1) && j.equals(end2);
}
class ArrayIterator<T> implements Iterator<T> {
private T[] array;
private int pos;
public ArrayIterator(T[] a, int p) { array = a; pos = p; }
public T get() { return array[pos]; }
public void set(T x) { array[pos] = x; }
public void advance() { ++pos; }
public void advance(int n) { pos += n; }
public ArrayIterator<T> clone() { return new ArrayIterator<T>(array,pos); }
public boolean equals(Iterator<T> other) {
ArrayIterator<T> i = (ArrayIterator<T>) other;
return pos == i.pos;
}
public String toString() {
return "ArrayIterator(" + String.valueOf(pos) + ")";
}
}
NEXT TIME: change to in-place to match the MergeSort assignment
Divide and conquer!
- Split the array in half and sort the two halves.
- Merge the two halves.
Implementation of Merge Sort:
public static int[] merge_sort(int[] A) {
if (A.length > 1) {
int middle = A.length / 2;
int[] L = merge_sort(Arrays.copyOfRange(A, 0, middle));
int[] R = merge_sort(Arrays.copyOfRange(A, middle, A.length));
return merge(L, R);
} else {
return A;
}
}
Implementaiton of Merge
private static int[] merge(int[] left, int[] right) {
int[] tmp = new int[left.length + right.length];
int i = 0, j = 0, k = 0;
while (i != left.length && j != right.length) {
if (left[i] <= right[j]) {
tmp[k] = left[i];
++i; ++k;
} else {
tmp[k] = right[j];
++j; ++k;
}
}
k = copy_range(left, i, left.length, tmp, k);
k = copy_range(right, j, right.length, tmp, k);
return tmp;
}
Implementation of Copy Range
private static int
copy_range(int[] src, int begin, int end, int[] dest, int out) {
for (int i = begin; i != end; ++i, ++out) {
dest[out] = src[i];
}
return out;
}
What's the time complexity?
Recursion tree:
c*n = c*n
/ \
/ \
c*n/2 c*n/2 = c*n
/ \ / \
/ \ / \
c*n/4 c*n/4 c*n/4 c*n/4 = c*n
...
n/(2^h) = 1 n = 2^h log(n) = h
Height of the recursion tree is log(n).
So the total work is c * n * log(n).
Time complexity is O(n * log(n)).
analogy: stack of pancakes
interface Stack<E> {
void push(E d);
E pop();
E peek();
boolean empty();
}
Example uses:
- reverse an array
- check for matching parentheses (with multiple kinds: square, round, curly)
- parsing (e.g. HTML)
- depth-search search
- procedure call stack
Analogy: checkout line at a grocery store
interface Queue<E> {
E dequeue();
void enqueue(E e);
E front();
boolean empty();
}
Example uses:
- breadth-first search,
- requests to a shared resource (e.g., printer),
- interupt handling inside an OS kernel,
- buffering to handle asynchronous communiation, such as interprocess IO, disk access, etc.
Implementation:
- array
- doubly-linked list
Like a set in mathematics. A collection of elements where the ordering
of the elements is not important, only membership matters.
Set
ignores duplicates.
interface Set {
void insert(int e);
void remove();
boolean member(int e);
boolean empty();
Set union(Set other);
Set intersect(Set other);
Set difference(Set other);
}
Implementations of Set
are the topic of several future lectures.