From 184029f97efa3599ebec7dbef8be0bbc7a0c97d1 Mon Sep 17 00:00:00 2001 From: "Jeremy G. Siek" Date: Wed, 20 Sep 2023 12:39:14 -0400 Subject: [PATCH] sep 20 --- lectures/Sep-20.md | 288 +++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 288 insertions(+) create mode 100644 lectures/Sep-20.md diff --git a/lectures/Sep-20.md b/lectures/Sep-20.md new file mode 100644 index 0000000..c47257d --- /dev/null +++ b/lectures/Sep-20.md @@ -0,0 +1,288 @@ +# Lecture: AVL Trees Continued, Code Review: Flood It! + +**Definition** The AVL Invariant: the height of two child subtrees may +only differ by 1. + +Red-black trees are an alternative to AVL trees. +AVL is faster on lookup than red-black trees but slower on +insertion and removal because AVL is more rigidly balanced. + + +## Tree Rotation + + y x + / \ right_rotate(y) / \ + x C ---------------> A y + / \ <------------- / \ + A B left_rotate(x) B C + + +## Insert example: insert(55) + + 41 + / \ + 20 65 + / \ / + 11 29 50 + / + 26 + +So 65 breaks the AVL invariant, and we have a zig-zag: + + 65 + / + 50 + \ + 55 + +A right rotation at 65 gives us a zag-zig, we're not making progress! + + 65(y) 50(x) + / right_rotate(65) \ + 50(x) ----------------> 65(y) + \ / + 55(B) 55(B) + +Instead, let's try a left rotate at 50: + + 65 65 + / left_rotate(50) / + 50(x) ---------------> 55(y) + \ / + 55(y) 50(x) + +This looks familiar, now we can rotate right. + + 65(y) 55(x) + / right_rotate(65) / \ + 55(x) ---------------> 50(A) 65(y) + / + 50(A) + + +## Example: Remove Node and fix AVL + +Given the following AVL Tree, delete the node with key 8. +(This example has two nodes that end up violating the AVL +property.) + + 8 + / \ + 5 10 + / \ / \ + 2 6 9 11 + / \ \ \ + 1 3 7 12 + \ + 4 +Solution: +* Step 1: replace node 8 with node 9 + + 9 + / \ + 5 10 + / \ \ + 2 6 11 + / \ \ \ + 1 3 7 12 + \ + 4 + +* Step 2: find lowest node that breaks the AVL property: node 10 +* Step 3: rotate 10 left + + 9 + / \ + 5 11 + / \ / \ + 2 6 10 12 + / \ \ + 1 3 7 + \ + 4 + +* Step 4: find lowest node that breaks the AVL property: node 9 +* Step 5: rotate 9 right + + 5 + / \ + / \ + 2 9 + / \ / \ + 1 3 6 11 + \ \ / \ + 4 7 10 12 + + +## Algorithm for fixing AVL property + +Starting from the changed node, repeat the following up to the root of +the tree (because there can be several AVL violations). +* check whether node x is AVL, if not do the following. +* if height(x.left) ≤ height(x.right) + + 1. if height(x.right.left) ≤ height(x.right.right) + + let k = height(x.right.right) + + x k+2 y ≤k+2 + / \ left_rotate(x) / \ + ≤k A y k+1 ===============> ≤k+1 x C k + / \ / \ + ≤k B C k ≤k A B ≤k + + 2. if height(x.right.left) > height(x.right.right) + + let k = height(x.right.left) + + k+2 x y k+1 + / \ / \ + k-1 A z k+1 R(z), L(x) k x z k + / \ =============> / \ / \ + k y D k-1 k-1 A B C D k-1 + / \ + B C height(x.right) + + 1. if height(x.left.left) < height(x.left.right) (note: strictly less!) + + let k = height(x.left.right) + + x k+2 z k+1 + / \ / \ + k+1 y D k-1 L(y), R(x) k y x k + / \ =============> / \ / \ + k-1 A z k A B C D k A x k+1 + / \ / \ + k A B ≤k ≤k B C k-1 + + +## Time Complexity of Insert and Remove for AVL Tree + +O(h) = O(log n) + +## Using AVL Trees for sorting + +* insert n items: O(n log(n)) + +* in-order traversal: O(n) + +* overall time complexity: O(n log(n)) + + +## ADT's that can be implemented by AVL Trees + +* priority queue: + insert, delete, min + +* ordered set: + insert, delete, min, max, next, previous + + +# Code Review: Flood It! + +## Straightforward but slow + + public static void flood(WaterColor color, + LinkedList flooded_list, + Tile[][] tiles, + Integer board_size) { + int i; + for (i = 0; i < flooded_list.size(); ++i) { + List neighbors = flooded_list.get(i).neighbors(tiles.length); + for (int j = 0; j < neighbors.size(); ++j) { + if (tiles[neighbors.get(j).getY()][neighbors.get(j).getX()].getColor().equals(color) + && !flooded_list.contains(neighbors.get(j))) { + flooded_list.add(neighbors.get(j)); + } + } + } + } + +## Straightforward but fast + + public static void flood(WaterColor color, + LinkedList flooded_list, + Tile[][] tiles, + Integer board_size) { + HashSet is_flooded = new HashSet<>(flooded_list); + ArrayList flooded_array = new ArrayList<>(flooded_list); + for (int i = 0; i != flooded_array.size(); ++i) { + Coord c = flooded_array.get(i); + for (Coord n : c.neighbors(board_size)) { + if (!is_flooded.contains(n) + && tiles[n.getY()][n.getX()].getColor() == color) { + flooded_array.add(n); + flooded_list.add(n); + is_flooded.add(n); + } + } + } + } + +## Depth-first search + + public static void flood(WaterColor color, + LinkedList flooded_list, + Tile[][] tiles, + Integer board_size) { + for (int i = 0; i < flooded_list.size(); i++) { + checkNeighbor(flooded_list.get(i), board_size, flooded_list, color, tiles); + } + } + + public static void checkNeighbor(Coord currentTile, + Integer board_size, + LinkedList flooded_list, + WaterColor color, + Tile[][] tiles){ + List neighborsList = currentTile.neighbors(board_size); + for (int i = 0; i < neighborsList.size(); i++) { + Coord neighbor = neighborsList.get(i); + if(!flooded_list.contains(neighbor)) { + int x = neighbor.getX(); + int y = neighbor.getY(); + if(tiles[y][x].getColor() == color){ + flooded_list.add(neighborsList.get(i)); + checkNeighbor(neighborsList.get(i), board_size, flooded_list, color, tiles); + } + } + } + } + +## Breadth-first search + + public static void flood(WaterColor color, + LinkedList flooded_list, + Tile[][] tiles, + Integer board_size) { + HashSet is_flooded = new HashSet<>(flooded_list); + boolean[][] visited = new boolean[board_size][board_size]; + ArrayList queue = new ArrayList<>(flooded_list); + for (Coord c : queue) { + visited[c.getY()][c.getX()] = true; + } + while (queue.size() > 0) { + Coord c = queue.remove(0); + for (Coord n : c.neighbors(board_size)) { + if (!visited[n.getY()][n.getX()] && tiles[n.getY()][n.getX()].getColor() == color) { + queue.add(n); + if (is_flooded.add(n)) + flooded_list.add(n); + } + visited[n.getY()][n.getX()] = true; + } + } + } +