From 99acaa72f0947b2f77d5d5d943fa4b9feb355709 Mon Sep 17 00:00:00 2001 From: j4ck4l-24 Date: Wed, 19 Jun 2024 09:13:13 +0530 Subject: [PATCH] rev correction --- content/ctf-writeups/bcactf_5.0/rev.md | 14 ++++++++------ 1 file changed, 8 insertions(+), 6 deletions(-) diff --git a/content/ctf-writeups/bcactf_5.0/rev.md b/content/ctf-writeups/bcactf_5.0/rev.md index 4672b90..80624ac 100644 --- a/content/ctf-writeups/bcactf_5.0/rev.md +++ b/content/ctf-writeups/bcactf_5.0/rev.md @@ -89,19 +89,21 @@ sum(comb(\{a_1, a_2, a_3\})) = \frac{2a_1a_2 + 2a_2a_3 + 2a_1a_3 + {a_1}^2 + {a_ $$ $$ - sum(comb(\{a_1, a_2, a_3\})) = \frac{(a_1 + a_2 + a_3)^2 - (a_1 + a_2 + a_3)}{2} - $$ + + + In general: + +$$ +sum(comb(\{a_1, a_2, a_3, ...a_n\})) = \frac{\sum{a_i}* (\sum{a_i}-1)}{2} $$ -sum(comb(\{a_1, a_2, a_3, ...a_n\})) = \frac{\sum{a_i}* (\sum{a_i}-1)}{2} -$$ -or, +or, -$$ +$$ sum(comb(comb(\{a_1, a_2, a_3, ...a_n\}))) = \frac{\sum{a_i} * (\sum{a_i}-1) * (\sum{a_i}-2) * (\sum{a_i}+1)}{8} $$