-
Notifications
You must be signed in to change notification settings - Fork 0
/
cnn_normal_1_layer.py
executable file
·129 lines (101 loc) · 5.12 KB
/
cnn_normal_1_layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import tensorflow
from keras.callbacks import EarlyStopping
import pathlib
import matplotlib.pyplot as plt
data_dir = pathlib.Path("AnnotatedImages")
batch_size = 32
img_height = 245
img_width = 262
train_ds = tensorflow.keras.utils.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="training",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
val_ds = tensorflow.keras.utils.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="validation",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
class_names = train_ds.class_names
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=tensorflow.data.AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=tensorflow.data.AUTOTUNE)
firstLayerConv2D = [4, 8, 16]
firstLayerMaxPool = [2, 3, 4]
hiddenLayer = [100, 200, 300]
dropOut = [0.1, 0.2, 0.3]
iteration = 1
resultsFile = open("rgb_results_single_layer.txt", "w+")
for firstLayerConv in firstLayerConv2D:
for firstLayerPool in firstLayerMaxPool:
for neuralCount in hiddenLayer:
for percentage in dropOut:
secondLayerConv = 0
secondLayerPool = 0
thirdLayerConv = 0
thirdLayerPool = 0
model = tensorflow.keras.Sequential(
[
tensorflow.keras.layers.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
tensorflow.keras.layers.Conv2D(firstLayerConv, (3,3), padding='same', activation="relu"),
tensorflow.keras.layers.MaxPooling2D((firstLayerPool, firstLayerPool), strides=firstLayerPool),
# tensorflow.keras.layers.Conv2D(16, (3,3), padding='same', activation="relu"),
# tensorflow.keras.layers.MaxPooling2D((2, 2), strides=2),
# tensorflow.keras.layers.Conv2D(32, (3,3), padding='same', activation="relu"),
# tensorflow.keras.layers.MaxPooling2D((2, 2), strides=2),
tensorflow.keras.layers.Flatten(),
tensorflow.keras.layers.Dense(neuralCount, activation="relu"),
tensorflow.keras.layers.Dropout(percentage),
tensorflow.keras.layers.Dense(len(class_names), activation="softmax")
]
)
tensorflow.keras.utils.plot_model(model, "model.png", show_shapes=True)
model.compile(optimizer='adam', loss=tensorflow.keras.losses.SparseCategoricalCrossentropy(from_logits=False), metrics=['accuracy'])
model.summary()
model_checkpoint_callback = tensorflow.keras.callbacks.ModelCheckpoint(
filepath='model.h5',
save_weights_only=False,
monitor='val_loss',
mode='min',
save_best_only=True)
callbacksE = [
EarlyStopping(patience=4, restore_best_weights=True),
model_checkpoint_callback,
]
history = model.fit(
train_ds,
validation_data=val_ds,
epochs=100,
callbacks=callbacksE,
)
print(history.history.keys())
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs_range = range(100)
plt.figure(figsize=(8, 8))
plt.subplot(1, 2, 1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
imageName = "rgb_1_"+str(iteration)+".png"
plt.savefig(imageName)
results = str(firstLayerConv) + ", " + str(firstLayerPool) + ", " + str(secondLayerConv) + ", " + str(secondLayerPool) + ", " \
+ str(thirdLayerConv) + ", " + str(thirdLayerPool) + ", " + str(neuralCount) + ", " + str(percentage) + ", " \
+ "{:.4f}".format(acc[-5]) + ", " + "{:.4f}".format(loss[-5]) + ", " \
+ "{:.4f}".format(val_acc[-5]) + ", " + "{:.4f}".format(val_loss[-5]) + ", " \
+ str(len(acc)) + ", " + imageName + "\n"
resultsFile.write(results)
resultsFile.flush()
model = None
iteration += 1