-
Notifications
You must be signed in to change notification settings - Fork 432
/
Copy pathReXNets.py
195 lines (154 loc) · 6.75 KB
/
ReXNets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
"""
@author: Jun Wang
@date: 20210322
@contact: [email protected]
"""
# based on:
# https://github.com/clovaai/rexnet/blob/master/rexnetv1.py
"""
ReXNet
Copyright (c) 2020-present NAVER Corp.
MIT license
"""
import torch
import torch.nn as nn
from math import ceil
class Flatten(nn.Module):
def forward(self, input):
return input.view(input.size(0), -1)
# Memory-efficient Siwsh using torch.jit.script borrowed from the code in (https://twitter.com/jeremyphoward/status/1188251041835315200)
# Currently use memory-efficient Swish as default:
USE_MEMORY_EFFICIENT_SWISH = True
if USE_MEMORY_EFFICIENT_SWISH:
@torch.jit.script
def swish_fwd(x):
return x.mul(torch.sigmoid(x))
@torch.jit.script
def swish_bwd(x, grad_output):
x_sigmoid = torch.sigmoid(x)
return grad_output * (x_sigmoid * (1. + x * (1. - x_sigmoid)))
class SwishJitImplementation(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return swish_fwd(x)
@staticmethod
def backward(ctx, grad_output):
x = ctx.saved_tensors[0]
return swish_bwd(x, grad_output)
def swish(x, inplace=False):
return SwishJitImplementation.apply(x)
else:
def swish(x, inplace=False):
return x.mul_(x.sigmoid()) if inplace else x.mul(x.sigmoid())
class Swish(nn.Module):
def __init__(self, inplace=True):
super(Swish, self).__init__()
self.inplace = inplace
def forward(self, x):
return swish(x, self.inplace)
def ConvBNAct(out, in_channels, channels, kernel=1, stride=1, pad=0,
num_group=1, active=True, relu6=False):
out.append(nn.Conv2d(in_channels, channels, kernel,
stride, pad, groups=num_group, bias=False))
out.append(nn.BatchNorm2d(channels))
if active:
out.append(nn.ReLU6(inplace=True) if relu6 else nn.ReLU(inplace=True))
def ConvBNSwish(out, in_channels, channels, kernel=1, stride=1, pad=0, num_group=1):
out.append(nn.Conv2d(in_channels, channels, kernel,
stride, pad, groups=num_group, bias=False))
out.append(nn.BatchNorm2d(channels))
out.append(Swish())
class SE(nn.Module):
def __init__(self, in_channels, channels, se_ratio=12):
super(SE, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Conv2d(in_channels, channels // se_ratio, kernel_size=1, padding=0),
nn.BatchNorm2d(channels // se_ratio),
nn.ReLU(inplace=True),
nn.Conv2d(channels // se_ratio, channels, kernel_size=1, padding=0),
nn.Sigmoid()
)
def forward(self, x):
y = self.avg_pool(x)
y = self.fc(y)
return x * y
class LinearBottleneck(nn.Module):
def __init__(self, in_channels, channels, t, stride, use_se=True, se_ratio=12,
**kwargs):
super(LinearBottleneck, self).__init__(**kwargs)
self.use_shortcut = stride == 1 and in_channels <= channels
self.in_channels = in_channels
self.out_channels = channels
out = []
if t != 1:
dw_channels = in_channels * t
ConvBNSwish(out, in_channels=in_channels, channels=dw_channels)
else:
dw_channels = in_channels
ConvBNAct(out, in_channels=dw_channels, channels=dw_channels, kernel=3, stride=stride, pad=1,
num_group=dw_channels, active=False)
if use_se:
out.append(SE(dw_channels, dw_channels, se_ratio))
out.append(nn.ReLU6())
ConvBNAct(out, in_channels=dw_channels, channels=channels, active=False, relu6=True)
self.out = nn.Sequential(*out)
def forward(self, x):
out = self.out(x)
if self.use_shortcut:
out[:, 0:self.in_channels] += x
return out
class ReXNetV1(nn.Module):
def __init__(self, input_ch=16, final_ch=180, width_mult=1.0, depth_mult=1.0,
use_se=True, se_ratio=12, out_h=7, out_w=7, feat_dim=512,
dropout_ratio=0.2, bn_momentum=0.9):
super(ReXNetV1, self).__init__()
layers = [1, 2, 2, 3, 3, 5]
strides = [1, 2, 2, 2, 1, 2]
use_ses = [False, False, True, True, True, True]
layers = [ceil(element * depth_mult) for element in layers]
strides = sum([[element] + [1] * (layers[idx] - 1)
for idx, element in enumerate(strides)], [])
if use_se:
use_ses = sum([[element] * layers[idx] for idx, element in enumerate(use_ses)], [])
else:
use_ses = [False] * sum(layers[:])
ts = [1] * layers[0] + [6] * sum(layers[1:])
self.depth = sum(layers[:]) * 3
stem_channel = 32 / width_mult if width_mult < 1.0 else 32
inplanes = input_ch / width_mult if width_mult < 1.0 else input_ch
features = []
in_channels_group = []
channels_group = []
# The following channel configuration is a simple instance to make each layer become an expand layer.
for i in range(self.depth // 3):
if i == 0:
in_channels_group.append(int(round(stem_channel * width_mult)))
channels_group.append(int(round(inplanes * width_mult)))
else:
in_channels_group.append(int(round(inplanes * width_mult)))
inplanes += final_ch / (self.depth // 3 * 1.0)
channels_group.append(int(round(inplanes * width_mult)))
#ConvBNSwish(features, 3, int(round(stem_channel * width_mult)), kernel=3, stride=2, pad=1)
ConvBNSwish(features, 3, int(round(stem_channel * width_mult)), kernel=3, stride=1, pad=1)
for block_idx, (in_c, c, t, s, se) in enumerate(zip(in_channels_group, channels_group, ts, strides, use_ses)):
features.append(LinearBottleneck(in_channels=in_c,
channels=c,
t=t,
stride=s,
use_se=se, se_ratio=se_ratio))
#pen_channels = int(1280 * width_mult)
pen_channels = int(512 * width_mult)
ConvBNSwish(features, c, pen_channels)
#features.append(nn.AdaptiveAvgPool2d(1))
self.features = nn.Sequential(*features)
self.output_layer = nn.Sequential(nn.BatchNorm2d(512),
nn.Dropout(dropout_ratio),
Flatten(),
nn.Linear(512 * out_h * out_w, feat_dim),
nn.BatchNorm1d(feat_dim))
def forward(self, x):
x = self.features(x)
x = self.output_layer(x)
return x