-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClassif_from_HMM_descriptors_Coutrot.m
87 lines (71 loc) · 3.53 KB
/
Classif_from_HMM_descriptors_Coutrot.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
%If you use this toolbox, please cite Coutrot et al.,
%"Scanpath modeling and classification with Hidden Markov Models", Behavior
%Research Methods, 2017
% Classify tasks from Coutrot's dataset (conversational videos, 2 auditory conditions) with HMM-based gaze descriptors
clear
close all
load HMM_descriptor_Coutrot %computed with exemple_Compute_HMM_descriptors.m
all_stim=fieldnames(example_HMM_descriptor_Coutrot);
%LDA 1st Eigen Vector
%ini_stim=char(all_stim(1));
%ini_descriptor=example_HMM_descriptor_Coutrot.(ini_stim).with_os.gaze_descriptor;
%LDA_1st_Eigen_vect=NaN(size(ini_descriptor,2),length(all_stim));
%Correct classification vector
correct_classif=NaN(length(all_stim),1);
% For each stimulus, a correct classification score is computed
for istim=1:length(all_stim)
im_name=char(all_stim(istim));
%% Load HMM-based gaze descriptors from HMM_descriptor_Coutrot.mat
gaze_descriptor_ws=example_HMM_descriptor_Coutrot.(im_name).with_os.gaze_descriptor;
gaze_descriptor_wos=example_HMM_descriptor_Coutrot.(im_name).without_os.gaze_descriptor;
%% Normalization to zero mean and unit std
norm_gaze_descriptor_ws=zscore(gaze_descriptor_ws')';
norm_gaze_descriptor_wos=zscore(gaze_descriptor_wos')';
%% Regularization
all_task = [norm_gaze_descriptor_ws;norm_gaze_descriptor_wos];
lambda_I_all=0.00001*eye(size(all_task));
regul_gaze_descriptor_all = all_task - lambda_I_all.*all_task + lambda_I_all ;
regul_gaze_descriptor_ws=regul_gaze_descriptor_all(1:size(norm_gaze_descriptor_ws,1),:);
regul_gaze_descriptor_wos=regul_gaze_descriptor_all(size(norm_gaze_descriptor_ws,1)+1:...
size(norm_gaze_descriptor_ws,1)+size(norm_gaze_descriptor_wos,1),:);
%% Choose classes to classify
gaze_descriptors={regul_gaze_descriptor_ws, regul_gaze_descriptor_wos};
categoric_var={'with_os', 'without_os'};
%% Select type of classifier
classifier_type='LDA';
% classifier_type='diagquadratic';
% classifier_type='mahalanobis';
%classifier_type='SVMBinary';
%classifier_type='SVMMultiClass';
%classifier_type='AdaBoostBinary';
%classifier_type='AdaBoostMultiClass';
% classifier_type='RVM';%Only for 2-class problems
% classifier_type='AdaBoost';%Only for 2-class problems
% classifier_type= 'RandomForest';
%% k-fold cross-validation
cross_validation=1;
% % if cross_validation==1
% % leave-one-out
% % else
% % 'k'-cross_validation
% % end
try
[lda_stats, success_rate] = classifier(categoric_var, gaze_descriptors,classifier_type,cross_validation);
% %LDA 1st Eigen vector: absolute values and normalization
% lda_stats.eigenvec(:,1)=abs(lda_stats.eigenvec(:,1));
% LDA_1st_Eigen_vect(:,istim)=lda_stats.eigenvec(:,1)/sum(lda_stats.eigenvec(:,1));
catch
fprintf('stimuli %u could not be classified\n',istim)
success_rate=NaN;
manova_stats=NaN;
end
if ~mod(istim,1)
fprintf('stimuli %u success_rate %d\n',istim, success_rate)
end
correct_classif(istim)=success_rate;
end
fprintf('average correct classification score over %u stimuli is %3.1f %% (chance = %3.1f %%)\n',length(all_stim), 100*nanmean(correct_classif),100/length(categoric_var))
hist(correct_classif)
xlabel('Correct Classification Rate','FontSize',12,'FontWeight','bold')
ylabel('Frequency','FontSize',12,'FontWeight','bold')
% errorbar(squeeze(nanmean(abs(LDA_1st_Eigen_vect),2)),nanstd(abs(LDA_1st_Eigen_vect),0,2)/sqrt(length(all_stim)),'.')