-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
493 lines (444 loc) · 22.5 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import streamlit as st
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import math
# streamlit settings
st.set_page_config(layout="wide", page_title="Sustainable aircraft designer", page_icon="✈️")
st.title("Sustainable aircraft designer")
# Streamlit sidebar and common constants
# add a tab system
tab1, tab2 = st.tabs(["Electric Commercial Flight", "Comparison"])
with tab1:
# Title and Tabs
with st.expander("About"):
st.write(
'''
This section of the app is dedicated to the design of an electric commercial flight.
The design is based on the Boeing 737-800 MAX, which is a short to medium range commercial aircraft.
The design is based on the following assumptions:
- The aircraft is powered by a futuristic electric turbofan engine
- The aircraft is powered by a battery (albeit a futuristic one)
'''
)
# Constants
gravitational_constant = 9.81 # m/s^2
# System Level Requirements
st.header("System Level Requirements")
col1, col2, col3 = st.columns(3)
with col1:
req1_speed = st.number_input("Requirement 1: Target Cruising Speed (km/h)", min_value=200, max_value=1000, value=840)
with col2:
req2_range = st.number_input("Requirement 2: Target Maximum Range (km)", min_value=100, max_value=8000, value=5765)
with col3:
req3_payload = st.number_input("Requirement 3: Target Payload (kg)", min_value=100, max_value=100000, value=20000)
# Subsystem Level Requirements - Motor Subsystem
st.header("eTurbine Subsystem")
col1, col2, col3 = st.columns(3)
with col1:
subreq1_motor_thrust = st.number_input("Sub-Requirement 1: Target eTurbofan thrust (kN)", min_value=10.0, max_value=350.0, value=147.58)
with col2:
subreq2_motor_mass = st.number_input("Sub-Requirement 2: Max Motor Mass (kg)", min_value=10, max_value=10000, value=2780)
with col3:
heat_dissipation_capacity = st.number_input('Heat Dissipation Capacity (KW/kg, Control Point)', min_value=0.1, max_value=20.0, value=10.0)
# Control Points (Input Widgets)
st.header("Control Points")
col1, col2, col3 = st.columns(3)
with col1:
num_engines = st.number_input('Number of Engines (Control Point)', min_value=1, max_value=20, value=2)
lift_to_drag_ratio = st.slider('Lift-to-Drag Ratio (Control Point)', min_value=5.0, max_value=25.0, value=17.0)
with col2:
battery_mass_kg = st.number_input('Battery Mass (kg, Control Point)', min_value=1000, max_value=50000, value=20000)
battery_specific_energy_Wh_kg = st.number_input('Battery Specific Energy (Wh/kg, Control Point)', min_value=100, max_value=15500, value=711)
battery_multiplier = st.slider('Battery Energy density Multiplier (Control Point)', min_value=0.5, max_value=200.0, value=9.0)
with col3:
eta_i = st.slider('Inverter Efficiency (Control Point)', min_value=0.5, max_value=1.0, value=0.98)
eta_m = st.slider('Motor Efficiency (Control Point)', min_value=0.5, max_value=1.0, value=0.95, key='eta_m')
eta_p = st.slider('Propulsive Efficiency (Control Point)', min_value=0.3, max_value=1.0, value=0.5, key='eta_p')
st.markdown("---")
# Boeing 737-800 MAX Constants
b737_max_range = 5765 # km
b737_max_thrust = 120000 # N
b737_max_mass = 79015
b737_dry_mass = 41500 # kg
b737_fuel_mass = 26000 # kg
b737_max_engine_mass = 2780 # kg
jet_fuel_density = 0.804 # kg/L
jet_fuel_energy_density_Wh_kg = 12000 # Wh/kg
jet_fuel_energy_density_MJ_kg = jet_fuel_energy_density_Wh_kg / 3.6 # MJ/kg
b737_turbine_power = b737_fuel_mass * jet_fuel_energy_density_MJ_kg * req1_speed / b737_max_range # kW
# Convert cruising speed to m/s
cruising_speed_m_s = (req1_speed * 1000) / 3600
# Calculate range using the modified Breguet Range Equation for electric aircraft
# Convert units
battery_specific_energy_J_kg = battery_specific_energy_Wh_kg * 3600 * battery_multiplier # Convert Wh/kg to J/kg
# Calculate heat management mass
# split thrust by number of engines
subreq1_motor_thrust = subreq1_motor_thrust / (num_engines) # in N
motor_power = subreq1_motor_thrust * cruising_speed_m_s * 1000 / eta_p # in W
motor_heat = (1 - eta_m) * subreq1_motor_thrust * req1_speed * (1000/3600) * 1000 # in W
heat_mgmt_mass = motor_heat / (heat_dissipation_capacity * 1000) # in kg
total_motor_mass = (subreq2_motor_mass + heat_mgmt_mass)/max(1, num_engines-1) # in kg
# Update total eTurbofan mass based on heat management mass
total_mass_with_heat_mgmt = b737_max_engine_mass * num_engines + heat_mgmt_mass + battery_mass_kg + b737_dry_mass + req3_payload
# Calculate range using the modified Breguet Range Equation for electric aircraft
R_elec_m = (battery_specific_energy_J_kg / gravitational_constant) * lift_to_drag_ratio * (battery_mass_kg / total_mass_with_heat_mgmt) * eta_i * eta_m * eta_p
R_elec_km = R_elec_m / 1000 # Convert to km
# Compare with Boeing 737-800 MAX
percentage_difference_range = ((R_elec_km / b737_max_range) - 1) * 100 # percentage difference
percentage_difference_heat_mgmt_mass = ((heat_mgmt_mass / b737_max_engine_mass) - 1) * 100 # percentage difference
# calculate range for current battery energy density
R_elec_m_current = (battery_specific_energy_J_kg / battery_multiplier / gravitational_constant) * lift_to_drag_ratio * (battery_mass_kg / total_mass_with_heat_mgmt) * eta_i * eta_m * eta_p
R_elec_km_current = R_elec_m_current / 1000 # Convert to km
# make a plotly figure that shows how range changes with values for battery mass and battery specific energy
# generate a grid of values for battery mass and battery specific energy
battery_mass_start = 1000
battery_mass_end = 50000
battery_masses = np.linspace(battery_mass_start, battery_mass_end, 100)
# make generate a max specific energy value 10% higher than the design specific energy OR 10% higher than the B737-800 MAX fuel energy density, depending on which is bigger
max_battery_specific_energy = max(battery_specific_energy_J_kg/3600 * 1.1, jet_fuel_energy_density_Wh_kg * 1.1)
battery_specific_energies = np.linspace(0, max_battery_specific_energy, 100)
battery_masses_grid, battery_specific_energies_grid = np.meshgrid(battery_masses, battery_specific_energies)
# calculate range for each value in the grid
R_elec_m_grid = (battery_specific_energies_grid * 3600 * battery_multiplier / gravitational_constant) * lift_to_drag_ratio * (battery_masses_grid / total_mass_with_heat_mgmt) * eta_i * eta_m * eta_p
R_elec_km_grid = R_elec_m_grid / 1000 # Convert to km
# make a plotly contour plot that shows how the motor and propulsive efficiency affect range
# generate a grid of values for motor and propulsive efficiency
motor_efficiencies = np.linspace(0, 1.0, 100)
propulsive_efficiencies = np.linspace(0, 1.0, 100)
motor_efficiencies_grid, propulsive_efficiencies_grid = np.meshgrid(motor_efficiencies, propulsive_efficiencies)
# Display main numbers as metrics
col1, col2, col3 = st.columns(3)
col1.metric("Calculated e737 Range (km)", f"{R_elec_km:.2f}", f"{percentage_difference_range:.2f}% of 737-800 MAX")
col1.metric("Heat Management Mass (kg)", f"{heat_mgmt_mass:.2f}", f"{percentage_difference_heat_mgmt_mass:.2f}% of 737-800 MAX engine mass", delta_color="inverse")
col2.metric("Target eTurbine Thrust Required (kN)", f"{subreq1_motor_thrust:.2f}")
col2.metric("eTurbine Power Required (kW)", f"{motor_power / 1000:.2f}")
col2.metric("Motor Heat (kW)", f"{motor_heat / 1000:.2f}")
col3.metric("eTurbofan Mass (kg)", f"{total_motor_mass:.2f}", f"{(total_motor_mass / b737_max_engine_mass - 1) * 100:.2f}% of 737-800 MAX engine mass")
col3.metric("e737 Mass (kg)", f"{total_mass_with_heat_mgmt:.2f}", f"{(total_mass_with_heat_mgmt / b737_max_mass - 1) * 100:.2f}% of 737-800 MAX")
# show how many times we need to improve the battery specific energy to reach the target range and the motor power required comparing with current technology
col1.metric("New Battery Specific Energy (Wh/kg)", f"{(battery_specific_energy_J_kg/3600):.2f}", f"{battery_multiplier:.2f} times current technology")
col1.metric("Motor Power Improvement over current tech (kW)", f"{(motor_power / 1000):.2f}", f"{((motor_power / 1000)/120):.2f} times current technology")
# create a plotly figure with two subplots side by side
fig2 = make_subplots(rows=1, cols=1)
# add a contour plot for range vs battery mass to the first subplot
fig2.add_trace(go.Contour(x=battery_masses, y=battery_specific_energies, z=R_elec_km_grid, colorscale='Plasma', showscale=False), row=1, col=1)
# add a line for current battery specific energy
fig2.add_trace(go.Scatter(
x=[battery_mass_kg],
y=[battery_specific_energy_J_kg/3600],
name='Current',
hovertext=f'Range: {R_elec_km_current:.2f} km',
mode='markers',
marker=dict(color='red',size=10)),
row=1,
col=1
)
# add a scatter plot for the control point to both subplots
fig2.add_trace(go.Scatter(
x=[battery_mass_kg],
y=[battery_specific_energy_J_kg/3600],
name='Design',
hovertext=f'Range: {R_elec_km:.2f} km',
mode='markers',
marker=dict(color='white',size=10)),
row=1,
col=1
)
# add a horizontal line for the current battery mass and add an annotation
fig2.add_shape(
go.layout.Shape(
type="line",
x0=battery_mass_start,
x1=battery_mass_end,
y0=battery_specific_energy_Wh_kg,
y1=battery_specific_energy_Wh_kg,
line=dict(color="red", width=1, dash="dot"),
)
)
fig2.add_annotation(
x= battery_mass_end/1.5,
y=battery_specific_energy_Wh_kg,
text=f"Current MAX Battery Specific Energy: {battery_specific_energy_Wh_kg:.2f} Wh/kg",
showarrow=False,
font=dict(size=14, color="red"),
)
# add horizontal line for Boeing 737-800 MAX range and use jet fuel energy density to calculate the fuel mass and "battery specific energy"
fig2.add_shape(
go.layout.Shape(
type="line",
x0=battery_mass_start,
x1=battery_mass_end,
y0=jet_fuel_energy_density_Wh_kg ,
y1=jet_fuel_energy_density_Wh_kg,
line=dict(color="white", width=1, dash="dot"),
)
)
fig2.add_annotation(
x= battery_mass_end/1.5,
y=jet_fuel_energy_density_Wh_kg,
text=f"Jet Fuel Energy density: {jet_fuel_energy_density_Wh_kg:.2f} Wh/kg",
showarrow=False,
font=dict(size=14, color="white"),
)
# update the layout
fig2.update_layout(
title="Range vs Battery Mass and Battery Specific Energy",
xaxis_title="Battery Mass (kg)",
yaxis_title="Battery Specific Energy (Wh/kg)",
height=500,
width=1000,
# make legend horizontal
legend=dict(orientation="h", yanchor="bottom", y=-0.3, xanchor="right", x=1),
# make hover value lable say Battery Specific Energy (x), Battery Mass (y), and Range (z)
hoverlabel=dict(
font_size=11,
font_family="Rockwell"
),
hovermode="closest"
)
# display the plotly figure
st.plotly_chart(fig2, use_container_width=True)
# create a plotly figure with two subplots side by side (one for range vs motor efficiency vs propulsive efficiency and one for range vs inverter efficiency vs propulsive efficienc)
fig3 = make_subplots(rows=1, cols=2, subplot_titles=("Motor Efficiency vs Propulsive Efficiency", "Inverter Efficiency vs Propulsive Efficiency"))
# add a contour plot for range vs motor and propulsive efficiency to the first subplot
fig3.add_trace(go.Contour(x=motor_efficiencies, y=propulsive_efficiencies, z=R_elec_km_grid, colorscale='Plasma', showscale=False), row=1, col=1)
# add a scatter plot for the control point to both subplots
fig3.add_trace(go.Scatter(
x=[eta_m],
y=[eta_p],
name='Design',
hovertext=f'Range: {R_elec_km:.2f} km',
mode='markers',
marker=dict(color='white',size=10)),
row=1,
col=1
)
# add a contour plot for range vs inverter and propulsive efficiency to the second subplot
fig3.add_trace(go.Contour(x=motor_efficiencies, y=propulsive_efficiencies, z=R_elec_km_grid, colorscale='Plasma', showscale=False), row=1, col=2)
# add a scatter plot for the control point to both subplots
fig3.add_trace(go.Scatter(
x=[eta_i],
y=[eta_p],
name='Design',
hovertext=f'Range: {R_elec_km:.2f} km',
mode='markers',
marker=dict(color='white',size=10)),
row=1,
col=2
)
# update the layout
fig3.update_layout(
title="Range vs Motor and Propulsive Efficiency",
xaxis_title="Motor Efficiency",
yaxis_title="Propulsive Efficiency",
height=500,
width=1000,
# make legend horizontal
legend=dict(orientation="h", yanchor="bottom", y=-0.3, xanchor="right", x=1),
# make hover value lable say Motor Efficiency (x), Propulsive Efficiency (y), and Range (z)
hoverlabel=dict(
font_size=11,
font_family="Rockwell"
),
hovermode="closest"
)
# display the plotly figure
st.plotly_chart(fig3, use_container_width=True)
with tab2:
col1, col2 = st.columns([1,2])
with col1:
with st.expander("General Information", expanded=True):
col3, col4 = st.columns(2)
distance = col3.number_input("Distance of the flight (km)", 100, 1000, 275, 25)
co2_per_kWh = col4.number_input(
"CO2 emissions per kWh (kg CO2eq/kWh)",
0.1,
1.0,
0.219,
0.01,
help="CO2eq emissions per kWh of electricity. The default value is the value used by the International Energy Agency (IEA) for Portugal in 2019.",
)
# Plane constants and calculations
with st.expander("Plane settings", expanded=True):
fuel_consumption_plane = st.number_input(
"Fuel consumption of the airplane (kg/km)",
1.0,
5.0,
2.3,
0.1,
help="The fuel consumption of the airplane is the amount of fuel used per km. The default value is the value of the Boeing 737-800 max.",
)
lto_factor = st.slider(
"LTO factor",
1.0,
2.0,
1.25,
0.01,
help="LTO stands for Landing and Take Off, this factor accounts for the extra fuel used during these phases of the flight. The default value is 1.25, which is the value used by the International Civil Aviation Organization (ICAO) for short haul flights.",
)
passenger_capacity_plane = st.slider(
"Passenger capacity of the airplane", 50, 300, 189, 1
)
co2_per_kg_fuel = st.number_input(
"CO2 emissions per kg of fuel (kg CO2/kg fuel)", 1.0, 5.0, 3.0, 0.01
)
fill_car = fill_plane = np.linspace(0.1, 1, 100) # 10% to 100%
co2_per_passenger_plane = np.zeros(fill_plane.shape)
co2_per_passenger_plane_lto = np.zeros(fill_plane.shape)
for i, f_plane in enumerate(fill_plane):
co2_per_passenger_plane[i] = (
distance * fuel_consumption_plane * co2_per_kg_fuel
) / (passenger_capacity_plane * f_plane)
co2_per_passenger_plane_lto[i] = (
distance * fuel_consumption_plane * co2_per_kg_fuel * lto_factor
) / (passenger_capacity_plane * f_plane)
# Train constants and calculations
with st.expander("Train settings", expanded=True):
power_max_train = st.slider(
"Maximum power of the train (kW)", 1000, 10000, 5600, 100
)
efficiency_train = st.slider(
"Avg. % of train Power used during trip", 0.5, 1.0, 0.8, 0.05
)
total_carriages = st.slider("Total number of carriages in the train", 1, 20, 8, 1)
standard_carriage_seats = st.slider(
"Number of seats in standard carriages", 50, 200, 116, 1
)
first_class_carriage_seats = st.slider(
"Number of seats in first class carriages", 50, 200, 106, 1
)
bar_carriage_seats = st.slider("Number of seats in bar carriages", 0, 50, 0, 1)
speed_train = st.slider("Average speed of the train (km/h)", 50, 200, 100, 5)
total_capacity_train = (
(total_carriages) * standard_carriage_seats
+ first_class_carriage_seats * 2
+ bar_carriage_seats
)
energy_used_train_kWh = (
power_max_train * efficiency_train * distance
) / speed_train
total_co2_emissions_train = energy_used_train_kWh * co2_per_kWh
co2_per_passenger_train = np.zeros(fill_plane.shape)
for i, f_train in enumerate(fill_plane):
co2_per_passenger_train[i] = total_co2_emissions_train / (
total_capacity_train * f_train
)
# Car and Tesla constants and calculations
with st.expander("Car settings", expanded=True):
efficiency_car = np.linspace(0.05, 0.15, 8) # L/km, varying from 5 to 15 L/100km
car_capacity = st.slider("Passenger capacity of the car", 1, 8, 4, 1)
co2_per_l_fuel = st.slider(
"CO2 emissions per liter of fuel (kg CO2/liter)", 1.0, 5.0, 2.31, 0.01
)
energy_consumption_tesla_range = np.array([16.5]) / 100 # kWh/km
co2_per_passenger_car = np.zeros((efficiency_car.size, fill_car.size))
co2_per_passenger_tesla_range = np.zeros(
(energy_consumption_tesla_range.shape[0], fill_car.shape[0])
)
for j, e_tesla in enumerate(energy_consumption_tesla_range):
energy_used_tesla_kWh = distance * e_tesla
total_co2_emissions_tesla = energy_used_tesla_kWh * co2_per_kWh
for i, f_car in enumerate(fill_car):
co2_per_passenger_tesla_range[j, i] = total_co2_emissions_tesla / (
f_car * car_capacity
)
for i, e_car in enumerate(efficiency_car):
for j, f_car in enumerate(fill_car):
co2_per_passenger_car[i, j] = (distance * e_car * co2_per_l_fuel) / (
f_car * car_capacity
)
# Create a Plotly figure
fig = go.Figure()
# Add the traces to the Plotly figure
fig.add_trace(
go.Scatter(
x=fill_plane,
y=co2_per_passenger_plane_lto,
mode="lines",
name="Airplane (with LTO)",
line=dict(color="lightblue", width=4),
)
)
fig.add_trace(
go.Scatter(
x=fill_plane,
y=co2_per_passenger_plane,
mode="lines",
name="Airplane (without LTO)",
line=dict(color="pink", width=4),
)
)
fig.add_trace(
go.Scatter(
x=fill_plane,
y=co2_per_passenger_train,
mode="lines",
name="Electric Train",
line=dict(color="green", width=4),
)
)
fig.add_trace(
go.Scatter(
x=fill_plane,
y=co2_per_passenger_tesla_range[0, :],
mode="lines",
name="Tesla Model 3 (Long Range)",
line=dict(color="red", width=4),
)
)
# Add Tesla Model 3 traces
for i, e_car in enumerate(efficiency_car):
co2_per_passenger_car_at_fill = np.interp(
fill_plane, fill_car, co2_per_passenger_car[i, :]
)
fig.add_trace(
go.Scatter(
x=fill_plane,
y=co2_per_passenger_car_at_fill,
mode="lines",
name=f"Car ({e_car*100:.1f} L/100km)",
line=dict(color=px.colors.sequential.Plasma[i]),
)
)
# Add vertical lines and annotations
for occupancy in [0.25, 0.5, 0.75]:
fig.add_shape(
go.layout.Shape(
type="line",
x0=occupancy,
x1=occupancy,
y0=0,
y1=1,
yref="paper",
line=dict(color="gray", width=1, dash="dot"),
)
)
fig.add_annotation(
x=occupancy,
y=1,
yref="paper",
text=f"{int(occupancy * car_capacity)} occupants",
showarrow=False,
font=dict(size=14),
)
# Update layout
fig.update_layout(
title="CO2 Emissions per Passenger for Different Transport Modes (Including LTO for Airplane)",
xaxis_title="Percentage Fill (Car (gas), Tesla Model 3, Plane, and Train)",
yaxis_title="CO2 Emissions per Passenger (kg)",
xaxis=dict(gridcolor="gray"),
yaxis=dict(gridcolor="gray"),
# make mouse hover x-line
hovermode="x unified",
# make height of the plot 700 pixels
height=700,
# make legend horizontal
legend=dict(orientation="h", yanchor="bottom", y=-0.3, xanchor="right", x=1),
)
with col2:
# Display the Plotly figure in Streamlit
st.plotly_chart(fig, use_container_width=True)