-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconfig.py
156 lines (146 loc) · 7.94 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import copy
import json
import os
from re import T
from typing import Dict, Any
from transformers import (BertConfig, AutoConfig, RobertaConfig, XLMRobertaConfig,AlbertConfig,
PretrainedConfig)
class Config(object):
def __init__(self, **kwargs):
self.coref = kwargs.pop('coref', True)
# bert
self.bert_model_name = kwargs.pop('bert_model_name', 'bert-large-cased')
self.bert_cache_dir = kwargs.pop('bert_cache_dir', None)
self.extra_bert = kwargs.pop('extra_bert', -1)
self.use_extra_bert = kwargs.pop('use_extra_bert', False)
# global features
self.use_global_features = kwargs.get('use_global_features', False)
self.global_features = kwargs.get('global_features', [])
# model
self.multi_piece_strategy = kwargs.pop('multi_piece_strategy', 'first')
self.bert_dropout = kwargs.pop('bert_dropout', .5)
self.linear_dropout = kwargs.pop('linear_dropout', .4)
self.linear_bias = kwargs.pop('linear_bias', True)
self.linear_activation = kwargs.pop('linear_activation', "")
self.entity_hidden_num = kwargs.pop('entity_hidden_num', 150)
self.mention_hidden_num = kwargs.pop('mention_hidden_num', 150)
self.event_hidden_num = kwargs.pop('event_hidden_num', 600)
self.relation_hidden_num = kwargs.pop('relation_hidden_num', 150)
self.role_hidden_num = kwargs.pop('role_hidden_num', 600)
self.use_entity_type = kwargs.pop('use_entity_type', False)
self.beam_size = kwargs.pop('beam_size', 5)
self.beta_v = kwargs.pop('beta_v', 2)
self.beta_e = kwargs.pop('beta_e', 2)
self.relation_mask_self = kwargs.pop('relation_mask_self', True)
self.relation_directional = kwargs.pop('relation_directional', False)
self.symmetric_relations = set(kwargs.pop('symmetric_relations', ['PER-SOC']))
# files
self.train_file = kwargs.pop('train_file', None)
self.dev_file = kwargs.pop('dev_file', None)
self.test_file = kwargs.pop('test_file', None)
self.valid_pattern_path = kwargs.pop('valid_pattern_path', None)
self.log_path = kwargs.pop('log_path', None)
# training
self.accumulate_step = kwargs.pop('accumulate_step', 1)
self.batch_size = kwargs.pop('batch_size', 10)
self.eval_batch_size = kwargs.pop('eval_batch_size', 5)
self.max_epoch = kwargs.pop('max_epoch', 50)
self.learning_rate = kwargs.pop('learning_rate', 1e-3)
self.bert_learning_rate = kwargs.pop('bert_learning_rate', 1e-5)
self.weight_decay = kwargs.pop('weight_decay', 0.001)
self.bert_weight_decay = kwargs.pop('bert_weight_decay', 0.00001)
self.warmup_epoch = kwargs.pop('warmup_epoch', 5)
self.grad_clipping = kwargs.pop('grad_clipping', 5.0)
# others
self.use_gpu = kwargs.pop('use_gpu', True)
self.gpu_device = kwargs.pop('gpu_device', -1)
#adding
self.use_ere_biaffine = kwargs.pop('use_ere_biaffine',False)
# self.use_high_order = kwargs.pop('use_high_order',False)
self.split_train = kwargs.pop('split_train',True)
self.use_high_order_tl = kwargs.pop('use_high_order_tl', False)
self.use_high_order_le = kwargs.pop('use_high_order_le', False)
self.use_high_order_tre = kwargs.pop('use_high_order_tre',False)
self.use_high_order_sibling = kwargs.pop('use_high_order_sibling',False)
self.use_high_order_coparent = kwargs.pop('use_high_order_coparent',False)
self.use_high_order_ere = kwargs.pop('use_high_order_ere',False)
self.use_high_order_er = kwargs.pop('use_high_order_er',False)
self.use_high_order_re_sibling = kwargs.pop('use_high_order_re_sibling',False)
self.use_high_order_re_coparent = kwargs.pop('use_high_order_re_coparent',False)
self.use_high_order_re_grandparent = kwargs.pop('use_high_order_re_grandparent',False)
self.use_high_order_rr_coparent = kwargs.pop('use_high_order_rr_coparent',False)
self.use_high_order_rr_grandparent = kwargs.pop('use_high_order_rr_grandparent',False)
self.decomp_size = kwargs.pop('decomp_size',300)
self.tre_decomp_size = kwargs.pop('tre_decomp_size',150)
self.mfvi_iter = kwargs.pop('mfvi_iter',1)
self.event_classification = kwargs.pop('event_classification',True)
self.relation_classification = kwargs.pop('relation_classification',True)
self.rebatch = kwargs.pop('rebatch',False)
self.entity_classification = kwargs.pop('entity_classification',True)
self.trigger_maxent = kwargs.pop('trigger_maxent', False)
self.new_potential = kwargs.pop('new_potential',False)
self.penalized = kwargs.pop('penalized',False)
self.score_damp = kwargs.pop('score_damp',False)
self.prob_damp = kwargs.pop('prob_damp',False)
self.scaled = kwargs.pop('scaled', False)
self.use_guideliens = kwargs.pop('use_guideliens', False)
self.guideline_path = kwargs.pop('guideline_path', '')
self.asynchronous = kwargs.pop('asynchronous',False)
self.split_rel_ident = kwargs.pop('split_rel_ident',False)
self.new_score = kwargs.pop('new_score',False)
self.share_relation_type_reps = kwargs.pop('share_relation_type_reps',False)
self.test_er = kwargs.pop('test_er',False)
self.decomp = kwargs.pop('decomp',False)
self.alpha_role_sib = kwargs.pop('alpha_role_sib',1)
self.alpha_role_cop = kwargs.pop('alpha_role_sib',1)
self.alpha_entity_tre = kwargs.pop('alpha_entity_tre',1)
self.alpha_event_tre = kwargs.pop('alpha_event_tre',1)
self.alpha_role_tre = kwargs.pop('alpha_role_tre',1)
self.train_alpha = kwargs.pop('train_alpha',False)
self.gold_ent = kwargs.pop('gold_ent',False)
@classmethod
def from_dict(cls, dict_obj):
"""Creates a Config object from a dictionary.
Args:
dict_obj (Dict[str, Any]): a dict where keys are
"""
config = cls()
for k, v in dict_obj.items():
setattr(config, k, v)
return config
@classmethod
def from_json_file(cls, path):
with open(path, 'r', encoding='utf-8') as r:
return cls.from_dict(json.load(r))
def to_dict(self):
output = copy.deepcopy(self.__dict__)
return output
def save_config(self, path):
"""Save a configuration object to a file.
:param path (str): path to the output file or its parent directory.
"""
if os.path.isdir(path):
path = os.path.join(path, 'config.json')
print('Save config to {}'.format(path))
with open(path, 'w', encoding='utf-8') as w:
w.write(json.dumps(self.to_dict(), indent=2,
sort_keys=True))
@property
def bert_config(self):
if self.bert_model_name.startswith('bert-'):
return BertConfig.from_pretrained(self.bert_model_name,
cache_dir=self.bert_cache_dir)
elif self.bert_model_name.startswith('roberta-'):
return RobertaConfig.from_pretrained(self.bert_model_name,
cache_dir=self.bert_cache_dir)
elif self.bert_model_name.startswith('xlm-roberta-'):
return XLMRobertaConfig.from_pretrained(self.bert_model_name,
cache_dir=self.bert_cache_dir)
elif self.bert_model_name.startswith('albert-'):
return AlbertConfig.from_pretrained(self.bert_model_name,
cache_dir=self.bert_cache_dir)
elif 'scibert' in self.bert_model_name:
return AutoConfig.from_pretrained(self.bert_model_name,
cache_dir=self.bert_cache_dir)
else:
raise ValueError('Unknown model: {}'.format(self.bert_model_name))