-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathautoedit.py
413 lines (306 loc) · 14.6 KB
/
autoedit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
import gc
import io
import math
import sys
from PIL import Image, ImageOps
import requests
import torch
from torch import nn
from torch.nn import functional as F
from torchvision import transforms
from torchvision.transforms import functional as TF
from tqdm.notebook import tqdm
import numpy as np
from guided_diffusion.script_util import create_model_and_diffusion, model_and_diffusion_defaults
from dalle_pytorch import DiscreteVAE, VQGanVAE
from einops import rearrange
from math import log2, sqrt
import argparse
import pickle
import os
from encoders.modules import BERTEmbedder
import clip
# argument parsing
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', type=str, default = 'inpaint.pt',
help='path to the diffusion model')
parser.add_argument('--kl_path', type=str, default = 'kl-f8.pt',
help='path to the LDM first stage model')
parser.add_argument('--bert_path', type=str, default = 'bert.pt',
help='path to the LDM first stage model')
parser.add_argument('--text', type = str, required = False, default = '',
help='your text prompt')
parser.add_argument('--edit', type = str, required = False,
help='path to the image you want to edit (either an image file or .npy containing a numpy array of the image embeddings)')
parser.add_argument('--mask', type = str, required = False,
help='path to a mask image. white pixels = keep, black pixels = discard. width = image width/8, height = image height/8')
parser.add_argument('--negative', type = str, required = False, default = '',
help='negative text prompt')
parser.add_argument('--init_image', type=str, required = False, default = None,
help='init image to use')
parser.add_argument('--skip_timesteps', type=int, required = False, default = 0,
help='how many diffusion steps are gonna be skipped')
parser.add_argument('--prefix', type = str, required = False, default = '',
help='prefix for output files')
parser.add_argument('--num_batches', type = int, default = 1, required = False,
help='number of batches')
parser.add_argument('--batch_size', type = int, default = 1, required = False,
help='batch size')
parser.add_argument('--width', type = int, default = 256, required = False,
help='image size of output (multiple of 8)')
parser.add_argument('--height', type = int, default = 256, required = False,
help='image size of output (multiple of 8)')
parser.add_argument('--iterations', type = int, default=25, required = False,
help='number of mutation steps')
parser.add_argument('--starting_threshold', type = float, default=0.6, required = False,
help='how much of the image to replace at the start of editing (1 = inpaint the entire image)')
parser.add_argument('--ending_threshold', type = float, default=0.5, required = False,
help='how much of the image to replace at the end of editing')
parser.add_argument('--starting_radius', type = float, default=5, required = False,
help='size of noise blur at the start of editing (larger = coarser changes)')
parser.add_argument('--ending_radius', type = float, default=0.1, required = False,
help='size of noise blur at the end of editing (smaller = editing fine details)')
parser.add_argument('--seed', type = int, default=-1, required = False,
help='random seed')
parser.add_argument('--guidance_scale', type = float, default = 5.0, required = False,
help='classifier-free guidance scale')
parser.add_argument('--steps', type = int, default = 0, required = False,
help='number of diffusion steps')
parser.add_argument('--cpu', dest='cpu', action='store_true')
parser.add_argument('--clip_score', dest='clip_score', action='store_true')
parser.add_argument('--clip_guidance', dest='clip_guidance', action='store_true')
parser.add_argument('--clip_guidance_scale', type = float, default = 150, required = False,
help='Controls how much the image should look like the prompt') # may need to use lower value for ddim
parser.add_argument('--cutn', type = int, default = 16, required = False,
help='Number of cuts')
parser.add_argument('--ddim', dest='ddim', action='store_true') # turn on to use 50 step ddim
parser.add_argument('--ddpm', dest='ddpm', action='store_true') # turn on to use 50 step ddim
args = parser.parse_args()
def fetch(url_or_path):
if str(url_or_path).startswith('http://') or str(url_or_path).startswith('https://'):
r = requests.get(url_or_path)
r.raise_for_status()
fd = io.BytesIO()
fd.write(r.content)
fd.seek(0)
return fd
return open(url_or_path, 'rb')
class MakeCutouts(nn.Module):
def __init__(self, cut_size, cutn, cut_pow=1.):
super().__init__()
self.cut_size = cut_size
self.cutn = cutn
self.cut_pow = cut_pow
def forward(self, input):
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
for _ in range(self.cutn):
size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
cutouts.append(F.adaptive_avg_pool2d(cutout, self.cut_size))
return torch.cat(cutouts)
def spherical_dist_loss(x, y):
x = F.normalize(x, dim=-1)
y = F.normalize(y, dim=-1)
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
def tv_loss(input):
"""L2 total variation loss, as in Mahendran et al."""
input = F.pad(input, (0, 1, 0, 1), 'replicate')
x_diff = input[..., :-1, 1:] - input[..., :-1, :-1]
y_diff = input[..., 1:, :-1] - input[..., :-1, :-1]
return (x_diff**2 + y_diff**2).mean([1, 2, 3])
device = torch.device('cuda:0' if (torch.cuda.is_available() and not args.cpu) else 'cpu')
print('Using device:', device)
model_state_dict = torch.load(args.model_path, map_location='cpu')
model_params = {
'attention_resolutions': '32,16,8',
'class_cond': False,
'diffusion_steps': 1000,
'rescale_timesteps': True,
'timestep_respacing': '27', # Modify this value to decrease the number of
# timesteps.
'image_size': 32,
'learn_sigma': False,
'noise_schedule': 'linear',
'num_channels': 320,
'num_heads': 8,
'num_res_blocks': 2,
'resblock_updown': False,
'use_fp16': False,
'use_scale_shift_norm': False,
'clip_embed_dim': 768 if 'clip_proj.weight' in model_state_dict else None,
'image_condition': True if model_state_dict['input_blocks.0.0.weight'].shape[1] == 8 else False,
'super_res_condition': True if 'external_block.0.0.weight' in model_state_dict else False,
}
if args.ddpm:
model_params['timestep_respacing'] = 1000
if args.ddim:
if args.steps:
model_params['timestep_respacing'] = 'ddim'+str(args.steps)
else:
model_params['timestep_respacing'] = 'ddim50'
elif args.steps:
model_params['timestep_respacing'] = str(args.steps)
model_config = model_and_diffusion_defaults()
model_config.update(model_params)
if args.cpu:
model_config['use_fp16'] = False
# Load models
model, diffusion = create_model_and_diffusion(**model_config)
model.load_state_dict(model_state_dict, strict=False)
model.requires_grad_(args.clip_guidance).eval().to(device)
if model_config['use_fp16']:
model.convert_to_fp16()
else:
model.convert_to_fp32()
def set_requires_grad(model, value):
for param in model.parameters():
param.requires_grad = value
# vae
ldm = torch.load(args.kl_path, map_location="cpu")
ldm.to(device)
ldm.eval()
ldm.requires_grad_(args.clip_guidance)
set_requires_grad(ldm, args.clip_guidance)
bert = BERTEmbedder(1280, 32)
sd = torch.load(args.bert_path, map_location="cpu")
bert.load_state_dict(sd)
bert.to(device)
bert.half().eval()
set_requires_grad(bert, False)
# clip
clip_model, clip_preprocess = clip.load('ViT-L/14', device=device, jit=False)
clip_model.eval().requires_grad_(False)
normalize = transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])
# bert context
text_emb = bert.encode([args.text]*args.batch_size).to(device).float()
text_blank = bert.encode([args.negative]*args.batch_size).to(device).float()
text = clip.tokenize([args.text]*args.batch_size, truncate=True).to(device)
text_clip_blank = clip.tokenize([args.negative]*args.batch_size, truncate=True).to(device)
# clip context
text_emb_clip = clip_model.encode_text(text)
text_emb_clip_blank = clip_model.encode_text(text_clip_blank)
text_emb_norm = text_emb_clip[0] / text_emb_clip[0].norm(dim=-1, keepdim=True)
if args.seed >= 0:
torch.manual_seed(args.seed)
image_embed = None
# image context
if args.edit:
if args.edit.endswith('.npy'):
with open(args.edit, 'rb') as f:
input_image = np.load(f)
input_image = torch.from_numpy(input_image).unsqueeze(0).to(device)
input_image_pil = ldm.decode(input_image)
input_image_pil = TF.to_pil_image(input_image_pil.squeeze(0).add(1).div(2).clamp(0, 1))
input_image *= 0.18215
else:
input_image_pil = Image.open(fetch(args.edit)).convert('RGB')
input_image_pil = ImageOps.fit(input_image_pil, (args.width, args.height))
input_image = transforms.ToTensor()(input_image_pil).unsqueeze(0).to(device)
input_image = 2*input_image-1
input_image = 0.18215*ldm.encode(input_image).sample()
image_embed = torch.cat(args.batch_size*2*[input_image], dim=0).float()
elif model_params['image_condition']:
# using inpaint model but no image is provided
image_embed = torch.zeros(args.batch_size*2, 4, args.height//8, args.width//8, device=device)
# Create a classifier-free guidance sampling function
def model_fn(x_t, ts, **kwargs):
half = x_t[: len(x_t) // 2]
combined = torch.cat([half, half], dim=0)
model_out = model(combined, ts, **kwargs)
eps, rest = model_out[:, :3], model_out[:, 3:]
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
half_eps = uncond_eps + args.guidance_scale * (cond_eps - uncond_eps)
eps = torch.cat([half_eps, half_eps], dim=0)
return torch.cat([eps, rest], dim=1)
def save_sample(i, sample, clip_score=False):
for k, image in enumerate(sample['pred_xstart'][:args.batch_size]):
image /= 0.18215
im = image.unsqueeze(0)
out = ldm.decode(im)
npy_filename = f'output_npy/{args.prefix}{i * args.batch_size + k:05}.npy'
with open(npy_filename, 'wb') as outfile:
np.save(outfile, image.detach().cpu().numpy())
out = TF.to_pil_image(out.squeeze(0).add(1).div(2).clamp(0, 1))
filename = f'output/{args.prefix}{i * args.batch_size + k:05}.png'
out.save(filename)
if clip_score:
image_emb = clip_model.encode_image(clip_preprocess(out).unsqueeze(0).to(device))
image_emb_norm = image_emb / image_emb.norm(dim=-1, keepdim=True)
similarity = torch.nn.functional.cosine_similarity(image_emb_norm, text_emb_norm, dim=-1)
final_filename = f'output/{args.prefix}_{similarity.item():0.3f}_{i * args.batch_size + k:05}.png'
os.rename(filename, final_filename)
npy_final = f'output_npy/{args.prefix}_{similarity.item():0.3f}_{i * args.batch_size + k:05}.npy'
os.rename(npy_filename, npy_final)
def save_image(i, image):
image /= 0.18215
im = image.unsqueeze(0)
out = ldm.decode(im)
npy_filename = f'output_npy/{args.prefix}{i:05}.npy'
with open(npy_filename, 'wb') as outfile:
np.save(outfile, image.detach().cpu().numpy())
out = TF.to_pil_image(out.squeeze(0).add(1).div(2).clamp(0, 1))
filename = f'output/{args.prefix}{i:05}.png'
out.save(filename)
population = []
population_scores = []
for i in range(args.iterations):
print('iteration ', i)
kwargs = {
"context": torch.cat([text_emb, text_blank], dim=0).float(),
"clip_embed": torch.cat([text_emb_clip, text_emb_clip_blank], dim=0).float() if model_params['clip_embed_dim'] else None,
"image_embed": image_embed
}
if args.ddpm:
sample_fn = diffusion.ddpm_sample_loop_progressive
elif args.ddim:
sample_fn = diffusion.ddim_sample_loop_progressive
else:
sample_fn = diffusion.plms_sample_loop_progressive
samples = sample_fn(
model_fn,
(args.batch_size*2, 4, int(args.height/8), int(args.width/8)),
clip_denoised=False,
model_kwargs=kwargs,
cond_fn=None,
device=device,
progress=True,
init_image=None,
skip_timesteps=0,
)
for j, sample in enumerate(samples):
pass
for k, image in enumerate(sample['pred_xstart'][:args.batch_size]):
im = image/0.18215
im = im.unsqueeze(0)
out = ldm.decode(im)
out = TF.to_pil_image(out.squeeze(0).add(1).div(2).clamp(0, 1))
image_emb = clip_model.encode_image(clip_preprocess(out).unsqueeze(0).to(device))
image_emb_norm = image_emb / image_emb.norm(dim=-1, keepdim=True)
similarity = torch.nn.functional.cosine_similarity(image_emb_norm, text_emb_norm, dim=-1)
if i == 0:
population.append(image.unsqueeze(0))
population_scores.append(similarity)
save_image(k, image.detach().clone())
elif similarity > population_scores[k]:
population[k] = image.unsqueeze(0)
population_scores[k] = similarity
save_image(k, image.detach().clone())
print(k, similarity.item())
image_embed = torch.cat(population+population, dim=0)
radius = (args.starting_radius-args.ending_radius)*(1 - (i/args.iterations)) + args.ending_radius
blur = transforms.GaussianBlur(kernel_size=(15, 15), sigma=radius)
mask = torch.randn(args.batch_size, 1, args.height//8, args.width//8)
mask = blur(mask)
q = (args.starting_threshold-args.ending_threshold)*(1 - (i/args.iterations)) + args.ending_threshold
threshold = torch.quantile(mask, q)
mask = (mask > threshold).float()
#im_mask = TF.to_pil_image(mask[0])
#im_mask.save('mask_recur.png')
mask = mask.repeat(1, 4, 1, 1).to(device)
mask = torch.cat([mask,mask], dim=0)
image_embed *= mask