-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsupport_vector_machines.py
342 lines (280 loc) · 12.2 KB
/
support_vector_machines.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
'''
@Project :Awesome-DL-Models
@File :support_vector_machines.py
@Author :JackHCC
@Date :2022/2/6 12:21
@Desc :Support Vector Machine using the Sequential Minimal Optimization (SMO) algorithm for training.
'''
import numpy as np
import random as rnd
import matplotlib.pyplot as plt
class SVM:
"""
Simple implementation of a Support Vector Machine using the
Sequential Minimal Optimization (SMO) algorithm for training.
"""
def __init__(self, max_iter=10000, kernel_type='linear', C=10000.0, epsilon=0.001):
self.kernels = {
'linear': self.kernel_linear,
'quadratic': self.kernel_quadratic
}
self.max_iter = max_iter
self.kernel_type = kernel_type
self.C = C
self.epsilon = epsilon
def fit(self, X, y):
# Initialization
n, d = X.shape[0], X.shape[1]
alpha = np.zeros((n))
kernel = self.kernels[self.kernel_type]
count = 0
while True:
count += 1
alpha_prev = np.copy(alpha)
for j in range(0, n):
i = self.get_rnd_int(0, n - 1, j) # Get random int i~=j
x_i, x_j, y_i, y_j = X[i, :], X[j, :], y[i], y[j]
k_ij = kernel(x_i, x_i) + kernel(x_j, x_j) - 2 * kernel(x_i, x_j)
if k_ij == 0:
continue
alpha_prime_j, alpha_prime_i = alpha[j], alpha[i]
(L, H) = self.compute_L_H(self.C, alpha_prime_j, alpha_prime_i, y_j, y_i)
# Compute model parameters
self.w = self.calc_w(alpha, y, X)
self.b = self.calc_b(X, y, self.w)
# Compute E_i, E_j
E_i = self.E(x_i, y_i, self.w, self.b)
E_j = self.E(x_j, y_j, self.w, self.b)
# Set new alpha values
alpha[j] = alpha_prime_j + float(y_j * (E_i - E_j)) / k_ij
alpha[j] = max(alpha[j], L)
alpha[j] = min(alpha[j], H)
alpha[i] = alpha_prime_i + y_i * y_j * (alpha_prime_j - alpha[j])
# Check convergence
diff = np.linalg.norm(alpha - alpha_prev)
if diff < self.epsilon:
break
if count >= self.max_iter:
print("Iteration number exceeded the max of %d iterations" % (self.max_iter))
return
# Compute final model parameters
self.b = self.calc_b(X, y, self.w)
if self.kernel_type == 'linear':
self.w = self.calc_w(alpha, y, X)
# Get support vectors
alpha_idx = np.where(alpha > 0)[0]
support_vectors = X[alpha_idx, :]
return support_vectors, count
def predict(self, X):
return self.h(X, self.w, self.b)
def calc_b(self, X, y, w):
b_tmp = y - np.dot(w.T, X.T)
return np.mean(b_tmp)
def calc_w(self, alpha, y, X):
return np.dot(X.T, np.multiply(alpha, y))
# Prediction
def h(self, X, w, b):
return np.sign(np.dot(w.T, X.T) + b).astype(int)
# Prediction error
def E(self, x_k, y_k, w, b):
return self.h(x_k, w, b) - y_k
def compute_L_H(self, C, alpha_prime_j, alpha_prime_i, y_j, y_i):
if (y_i != y_j):
return (max(0, alpha_prime_j - alpha_prime_i), min(C, C - alpha_prime_i + alpha_prime_j))
else:
return (max(0, alpha_prime_i + alpha_prime_j - C), min(C, alpha_prime_i + alpha_prime_j))
def get_rnd_int(self, a, b, z):
i = z
cnt = 0
while i == z and cnt < 1000:
i = rnd.randint(a, b)
cnt = cnt + 1
return i
# Define kernels
def kernel_linear(self, x1, x2):
return np.dot(x1, x2.T)
def kernel_quadratic(self, x1, x2):
return (np.dot(x1, x2.T) ** 2)
def calc_acc(y, y_hat):
idx = np.where(y_hat == 1)
TP = np.sum(y_hat[idx] == y[idx])
idx = np.where(y_hat == -1)
TN = np.sum(y_hat[idx] == y[idx])
return float(TP + TN)/len(y)
class SVMSmo:
"""支持向量机, SMO算法另一种实现
:param X: 输入变量列表
:param Y: 输出变量列表
:param C: 正则化项(惩罚参数:C越大,对误分类的惩罚越大)
:param kernel_func: 核函数
:param tol: 容差
:param max_iter: 最大迭代次数
"""
def __init__(self, X, Y, kernel_func=None, C=1, tol=1e-4, max_iter=100):
# ---------- 检查参数 ----------
# 检查输入变量和输出变量
if len(X) != len(Y):
raise ValueError("输入变量和输出变量的样本数不同")
if len(X) == 0:
raise ValueError("输入样本数不能为0")
self.X, self.Y = X, Y
# 检查正则化项
if C <= 0:
raise ValueError("正则化项必须严格大于0")
self.C = C
# 检查核函数
if kernel_func is None:
kernel_func = self._linear_kernel # 当未设置核函数时默认使用线性核函数
self.kernel_func = kernel_func
# 检查容差
if tol <= 0:
raise ValueError("容差必须大于0")
self.tol = tol
# 检查最大迭代步数
if max_iter <= 0:
raise ValueError("迭代步数必须大于0")
self.max_iter = max_iter
# ---------- 初始化计算 ----------
self.n_samples = len(X) # 计算样本数
self.n_features = len(X[0]) # 计算特征数
self.kernel_matrix = self._count_kernel_matrix() # 计算核矩阵
# ---------- 取初值 ----------
self.A = np.zeros(self.n_samples) # 拉格朗日乘子(alpha)
self.b = 0 # 参数b
self.E = [float(-self.Y[i]) for i in range(self.n_samples)] # 初始化Ei的列表
# ---------- SMO算法训练支持向量机 ----------
self.smo() # SMO算法计算了拉格朗日乘子的近似解
self.support = [i for i, v in enumerate(self.A) if v > 0] # 计算支持向量的下标列表
def smo(self):
"""使用序列最小最优化(SMO)算法训练支持向量机"""
for k in range(self.max_iter):
change_num = 0 # 更新的样本数
for i1 in self.outer_circle(): # 外层循环:依据7.4.2.1选择第1个变量(找到a1并更新后继续向后遍历,而不回到第1个)
i2 = next(self.inner_circle(i1)) # 内层循环:依据7.4.2.2选择第2个变量(没有处理特殊情况下用启发式规则继续寻找a2)
a1_old, a2_old = self.A[i1], self.A[i2]
y1, y2 = self.Y[i1], self.Y[i2]
k11, k22, k12 = self.kernel_matrix[i1][i1], self.kernel_matrix[i2][i2], self.kernel_matrix[i1][i2]
eta = k11 + k22 - 2 * k12 # 根据式(7.107)计算η(eta)
a2_new = a2_old + y2 * (self.E[i1] - self.E[i2]) / eta # 依据式(7.106)计算未经剪辑的a2_new
# 计算a2_new所在对角线线段端点的界
if y1 != y2:
l = max(0, a2_old - a1_old)
h = min(self.C, self.C + a2_old - a1_old)
else:
l = max(0, a2_old + a1_old - self.C)
h = min(self.C, a2_old + a1_old)
# 依据式(7.108)剪辑a2_new
if a2_new > h:
a2_new = h
if a2_new < l:
a2_new = l
# 依据式(7.109)计算a_new
a1_new = a1_old + y1 * y2 * (a2_old - a2_new)
# 依据式(7.115)和式(7.116)计算b1_new和b2_new并更新b
b1_new = -self.E[i1] - y1 * k11 * (a1_new - a1_old) - y2 * k12 * (a2_new - a2_old) + self.b
b2_new = -self.E[i2] - y1 * k12 * (a1_new - a1_old) - y2 * k22 * (a2_new - a2_old) + self.b
if 0 < a1_new < self.C and 0 < a2_new < self.C:
self.b = b1_new
else:
self.b = (b1_new + b2_new) / 2
# 更新a1,a2
self.A[i1], self.A[i2] = a1_new, a2_new
# 依据式(7.105)计算并更新E
self.E[i1], self.E[i2] = self._count_g(i1) - y1, self._count_g(i2) - y2
if abs(a2_new - a2_old) > self.tol:
change_num += 1
print("迭代次数:", k, "change_num =", change_num)
if change_num == 0:
break
def predict(self, x):
"""预测实例"""
return np.sign(sum(self.A[i] * self.Y[i] * self.kernel_func(x, self.X[i]) for i in self.support) + self.b)
def _linear_kernel(self, x1, x2):
"""计算特征向量x1和特征向量x2的线性核函数的值"""
return sum(x1[i] * x2[i] for i in range(self.n_features))
def outer_circle(self):
"""外层循环生成器"""
for i1 in range(self.n_samples): # 先遍历所有在间隔边界上的支持向量点
if -self.tol < self.A[i1] < self.C + self.tol and not self._satisfied_kkt(i1):
yield i1
for i1 in range(self.n_samples): # 再遍历整个训练集的所有样本点
if not -self.tol < self.A[i1] < self.C + self.tol and not self._satisfied_kkt(i1):
yield i1
def inner_circle(self, i1):
"""内层循环生成器:未考虑特殊情况下启发式选择a2的情况"""
max_differ = 0
i2 = -1
for ii2 in range(self.n_samples):
differ = abs(self.E[i1] - self.E[ii2])
if differ > max_differ:
i2, max_differ = ii2, differ
yield i2
def _count_kernel_matrix(self):
"""计算核矩阵"""
kernel_matrix = [[0] * self.n_samples for _ in range(self.n_samples)]
for i1 in range(self.n_samples):
for i2 in range(i1, self.n_samples):
kernel_matrix[i1][i2] = kernel_matrix[i2][i1] = self.kernel_func(self.X[i1], self.X[i2])
return kernel_matrix
def _count_g(self, i1):
"""依据式(7.104)计算g(x)"""
return sum(self.A[i2] * self.Y[i2] * self.kernel_matrix[i1][i2] for i2 in range(self.n_samples)) + self.b
def _satisfied_kkt(self, i):
"""判断是否满足KKT条件"""
ygi = self.Y[i] * self._count_g(i) # 计算 yi*g(xi)
if -self.tol < self.A[i] < self.tol and ygi >= 1 - self.tol:
return True # (7.111)式的情况: ai=0 && yi*g(xi)>=1
elif -self.tol < self.A[i] < self.C + self.tol and abs(ygi - 1) < self.tol:
return True # (7.112)式的情况: 0<ai<C && yi*g(xi)=1
elif self.C - self.tol < self.A[i] < self.C + self.tol and ygi <= 1 + self.tol:
return True # (7.113)式的情况: ai=C && yi*g(xi)<=1
else:
return False
if __name__ == "__main__":
print("开始测试SVM算法……")
# 加载数据
X = np.array([[1, 2], [2, 3], [3, 3], [2, 1], [3, 2]])
y = np.array([1, 1, 1, -1, -1])
# Initialize model
model = SVM()
# Fit model
support_vectors, iterations = model.fit(X, y)
# Support vector count
sv_count = support_vectors.shape[0]
# Make prediction
y_hat = model.predict(X)
# Calculate accuracy
acc = calc_acc(y, y_hat)
print("Support vector count: %d" % (sv_count))
print("bias:\t\t%.3f" % (model.b))
print("w:\t\t" + str(model.w))
print("accuracy:\t%.3f" % (acc))
print("Converged after %d iterations" % (iterations))
# 绘制数据点
color_seq = ['red' if v == 1 else 'blue' for v in y]
plt.scatter([i[0] for i in X], [i[1] for i in X], c=color_seq)
# 得到x轴的所有点
xaxis = np.linspace(0, 3.5)
w = model.w
# 计算斜率
a = -w[0] / w[1]
# 得到分离超平面
y_sep = a * xaxis - (model.b) / w[1]
# 下边界超平面
b = support_vectors[0]
yy_down = a * xaxis + (b[1] - a * b[0])
# 上边界超平面
b = support_vectors[-1]
yy_up = a * xaxis + (b[1] - a * b[0])
# 绘制超平面
plt.plot(xaxis, y_sep, 'k-')
plt.plot(xaxis, yy_down, 'k--')
plt.plot(xaxis, yy_up, 'k--')
# 绘制支持向量
plt.xlabel('$x^{(1)}$')
plt.ylabel('$x^{(2)}$')
plt.scatter(support_vectors[:, 0], support_vectors[:, 1],
s=150, facecolors='none', edgecolors='k')
plt.show()