-
Notifications
You must be signed in to change notification settings - Fork 2
/
base_transformer.py
312 lines (256 loc) · 17.3 KB
/
base_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import math
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as Data
# Encoder_input Decoder_input Decoder_output
sentences = [['我 是 学 生 P', 'S I am a student', 'I am a student E'], # S: 开始符号
['我 喜 欢 学 习', 'S I like learning P', 'I like learning P E'], # E: 结束符号
['我 是 男 生 P', 'S I am a boy', 'I am a boy E']] # P: 占位符号,如果当前句子不足固定长度用P占位
src_vocab = {'P': 0, '我': 1, '是': 2, '学': 3, '生': 4, '喜': 5, '欢': 6, '习': 7, '男': 8} # 词源字典 字:索引
src_idx2word = {src_vocab[key]: key for key in src_vocab}
src_vocab_size = len(src_vocab) # 字典字的个数
tgt_vocab = {'S': 0, 'E': 1, 'P': 2, 'I': 3, 'am': 4, 'a': 5, 'student': 6, 'like': 7, 'learning': 8, 'boy': 9}
idx2word = {tgt_vocab[key]: key for key in tgt_vocab} # 把目标字典转换成 索引:字的形式
tgt_vocab_size = len(tgt_vocab) # 目标字典尺寸
src_len = len(sentences[0][0].split(" ")) # Encoder输入的最大长度
tgt_len = len(sentences[0][1].split(" ")) # Decoder输入输出最大长度
# 把sentences 转换成字典索引
def make_data(sentences):
enc_inputs, dec_inputs, dec_outputs = [], [], []
for i in range(len(sentences)):
enc_input = [[src_vocab[n] for n in sentences[i][0].split()]]
dec_input = [[tgt_vocab[n] for n in sentences[i][1].split()]]
dec_output = [[tgt_vocab[n] for n in sentences[i][2].split()]]
enc_inputs.extend(enc_input)
dec_inputs.extend(dec_input)
dec_outputs.extend(dec_output)
return torch.LongTensor(enc_inputs), torch.LongTensor(dec_inputs), torch.LongTensor(dec_outputs)
enc_inputs, dec_inputs, dec_outputs = make_data(sentences)
# print(enc_inputs, enc_inputs.shape)
# 自定义数据集函数
class MyDataSet(Data.Dataset):
def __init__(self, enc_inputs, dec_inputs, dec_outputs):
super(MyDataSet, self).__init__()
self.enc_inputs = enc_inputs
self.dec_inputs = dec_inputs
self.dec_outputs = dec_outputs
def __len__(self):
return self.enc_inputs.shape[0]
def __getitem__(self, idx):
return self.enc_inputs[idx], self.dec_inputs[idx], self.dec_outputs[idx]
loader = Data.DataLoader(MyDataSet(enc_inputs, dec_inputs, dec_outputs), 2, True)
# 参数设置
d_model = 512 # 字 Embedding 的维度
d_ff = 2048 # 前向传播隐藏层维度 d_ff = d_model * 4
d_k = d_v = 64 # K(=Q), V的维度
n_layers = 6 # 有多少个encoder和decoder
n_heads = 8 # Multi-Head Attention设置为8 d_k * n_heads = d_model
# Positional Embedding
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
# pos_table 第一个维度对应第几个词 pos,第二个维度对应每个词的词嵌入维度 i,[max_len, d_model]
pos_table = np.array([
[pos / np.power(10000, 2 * i / d_model) for i in range(d_model)] # i 针对词嵌入的维度
if pos != 0 else np.zeros(d_model) for pos in range(max_len)]) # pos 针对第几个词
pos_table[1:, 0::2] = np.sin(pos_table[1:, 0::2]) # 字嵌入维度为偶数时
pos_table[1:, 1::2] = np.cos(pos_table[1:, 1::2]) # 字嵌入维度为奇数时
self.pos_table = torch.FloatTensor(pos_table).cuda() # enc_inputs: [seq_len, d_model]
def forward(self, enc_inputs): # enc_inputs: [batch_size, seq_len, d_model]
enc_inputs += self.pos_table[:enc_inputs.size(1), :] # 注意,tensor的size(n)表示第n的维度大小,与numpy的array.size不一样,np只是个数值
return self.dropout(enc_inputs.cuda())
# Mask掉停用词
def get_attn_pad_mask(seq_q, seq_k): # seq_q: [batch_size, seq_len] ,seq_k: [batch_size, seq_len]
batch_size, len_q = seq_q.size()
batch_size, len_k = seq_k.size()
pad_attn_mask = seq_k.data.eq(0).unsqueeze(1) # 判断 输入那些含有P(=0),用1标记 ,[batch_size, 1, len_k]
return pad_attn_mask.expand(batch_size, len_q, len_k) # 扩展成多维度, [batch_size, len_q, len_k]
# Decoder 输入 Mask
def get_attn_subsequence_mask(seq): # seq: [batch_size, tgt_len]
attn_shape = [seq.size(0), seq.size(1), seq.size(1)]
subsequence_mask = np.triu(np.ones(attn_shape), k=1) # 生成上三角矩阵,[batch_size, tgt_len, tgt_len], 数值为1
subsequence_mask = torch.from_numpy(subsequence_mask).byte() # [batch_size, tgt_len, tgt_len]
return subsequence_mask
# 计算注意力信息、残差和归一化
class ScaledDotProductAttention(nn.Module):
def __init__(self):
super(ScaledDotProductAttention, self).__init__()
def forward(self, Q, K, V, attn_mask):
# Q: [batch_size, n_heads, len_q, d_k]
# K: [batch_size, n_heads, len_k, d_k]
# V: [batch_size, n_heads, len_v(=len_k), d_v]
# attn_mask: [batch_size, n_heads, seq_len, seq_len]
scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k) # scores : [batch_size, n_heads, len_q, len_k]
scores.masked_fill_(attn_mask, -1e9) # 如果时停用词P就等于 0
attn = nn.Softmax(dim=-1)(scores)
context = torch.matmul(attn, V) # [batch_size, n_heads, len_q, d_v]
return context, attn
class MultiHeadAttention(nn.Module):
def __init__(self):
super(MultiHeadAttention, self).__init__()
self.W_Q = nn.Linear(d_model, d_k * n_heads, bias=False)
self.W_K = nn.Linear(d_model, d_k * n_heads, bias=False)
self.W_V = nn.Linear(d_model, d_v * n_heads, bias=False)
self.fc = nn.Linear(n_heads * d_v, d_model, bias=False) # multi-head 最后concat后需要乘上一个W_O得到一个 总输出b
def forward(self, input_Q, input_K, input_V, attn_mask):
# input_Q: [batch_size, len_q, d_model]
# input_K: [batch_size, len_k, d_model]
# input_V: [batch_size, len_v(=len_k), d_model]
# attn_mask: [batch_size, seq_len, seq_len]
residual, batch_size = input_Q, input_Q.size(0)
# view()函数相当于reshape函数
Q = self.W_Q(input_Q).view(batch_size, -1, n_heads, d_k).transpose(1, 2) # Q: [batch_size, n_heads, len_q, d_k]
K = self.W_K(input_K).view(batch_size, -1, n_heads, d_k).transpose(1, 2) # K: [batch_size, n_heads, len_k, d_k]
V = self.W_V(input_V).view(batch_size, -1, n_heads, d_v).transpose(1, 2) # V: [batch_size, n_heads, len_v(=len_k), d_v]
attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1) # attn_mask : [batch_size, n_heads, seq_len, seq_len]
context, attn = ScaledDotProductAttention()(Q, K, V, attn_mask) # context: [batch_size, n_heads, len_q, d_v]
# attn: [batch_size, n_heads, len_q, len_k]
context = context.transpose(1, 2).reshape(batch_size, -1,
n_heads * d_v) # context: [batch_size, len_q, n_heads * d_v]
output = self.fc(context) # [batch_size, len_q, d_model]
return nn.LayerNorm(d_model).cuda()(output + residual), attn # ADD And Layer Norm
# 前馈神经网络
class PoswiseFeedForwardNet(nn.Module):
def __init__(self):
super(PoswiseFeedForwardNet, self).__init__()
self.fc = nn.Sequential(
nn.Linear(d_model, d_ff, bias=False),
nn.ReLU(),
nn.Linear(d_ff, d_model, bias=False))
def forward(self, inputs): # inputs: [batch_size, seq_len, d_model]
residual = inputs
output = self.fc(inputs)
return nn.LayerNorm(d_model).cuda()(output + residual) # [batch_size, seq_len, d_model]
# 单个Encoder
class EncoderLayer(nn.Module):
def __init__(self):
super(EncoderLayer, self).__init__()
self.enc_self_attn = MultiHeadAttention() # 多头注意力机制
self.pos_ffn = PoswiseFeedForwardNet() # 前馈神经网络
def forward(self, enc_inputs, enc_self_attn_mask): # enc_inputs: [batch_size, src_len, d_model]
# 输入3个enc_inputs分别与W_q、W_k、W_v相乘得到Q、K、V # enc_self_attn_mask: [batch_size, src_len, src_len]
enc_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs, # enc_outputs: [batch_size, src_len, d_model],
enc_self_attn_mask) # attn: [batch_size, n_heads, src_len, src_len]
enc_outputs = self.pos_ffn(enc_outputs) # enc_outputs: [batch_size, src_len, d_model]
return enc_outputs, attn
# 整个Encoder
class Encoder(nn.Module):
def __init__(self):
super(Encoder, self).__init__()
self.src_emb = nn.Embedding(src_vocab_size, d_model) # 把字转换字向量
self.pos_emb = PositionalEncoding(d_model) # 加入位置信息
self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])
def forward(self, enc_inputs): # enc_inputs: [batch_size, src_len]
enc_outputs = self.src_emb(enc_inputs) # enc_outputs: [batch_size, src_len, d_model]
''' token embedding 与 positional embedding如何混合? '''
enc_outputs = self.pos_emb(enc_outputs) # enc_outputs: [batch_size, src_len, d_model]
enc_self_attn_mask = get_attn_pad_mask(enc_inputs, enc_inputs) # enc_self_attn_mask: [batch_size, src_len, src_len]
enc_self_attns = []
for layer in self.layers:
enc_outputs, enc_self_attn = layer(enc_outputs, enc_self_attn_mask) # enc_outputs : [batch_size, src_len, d_model],
# enc_self_attn : [batch_size, n_heads, src_len, src_len]
enc_self_attns.append(enc_self_attn)
return enc_outputs, enc_self_attns
# 单个decoder
class DecoderLayer(nn.Module):
def __init__(self):
super(DecoderLayer, self).__init__()
self.dec_self_attn = MultiHeadAttention()
self.dec_enc_attn = MultiHeadAttention()
self.pos_ffn = PoswiseFeedForwardNet()
def forward(self, dec_inputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask): # dec_inputs: [batch_size, tgt_len, d_model]
# enc_outputs: [batch_size, src_len, d_model]
# dec_self_attn_mask: [batch_size, tgt_len, tgt_len]
# dec_enc_attn_mask: [batch_size, tgt_len, src_len]
dec_outputs, dec_self_attn = self.dec_self_attn(dec_inputs, dec_inputs,
dec_inputs, dec_self_attn_mask) # dec_outputs: [batch_size, tgt_len, d_model]
# dec_self_attn: [batch_size, n_heads, tgt_len, tgt_len]
dec_outputs, dec_enc_attn = self.dec_enc_attn(dec_outputs, enc_outputs,
enc_outputs, dec_enc_attn_mask) # dec_outputs: [batch_size, tgt_len, d_model]
# dec_enc_attn: [batch_size, h_heads, tgt_len, src_len]
dec_outputs = self.pos_ffn(dec_outputs) # dec_outputs: [batch_size, tgt_len, d_model]
return dec_outputs, dec_self_attn, dec_enc_attn
# 整个Decoder
class Decoder(nn.Module):
def __init__(self):
super(Decoder, self).__init__()
self.tgt_emb = nn.Embedding(tgt_vocab_size, d_model)
self.pos_emb = PositionalEncoding(d_model)
self.layers = nn.ModuleList([DecoderLayer() for _ in range(n_layers)])
def forward(self, dec_inputs, enc_inputs, enc_outputs): # dec_inputs: [batch_size, tgt_len]
# enc_intpus: [batch_size, src_len]
# enc_outputs: [batsh_size, src_len, d_model]
dec_outputs = self.tgt_emb(dec_inputs) # [batch_size, tgt_len, d_model]
dec_outputs = self.pos_emb(dec_outputs).cuda() # [batch_size, tgt_len, d_model]
dec_self_attn_pad_mask = get_attn_pad_mask(dec_inputs, dec_inputs).cuda() # [batch_size, tgt_len, tgt_len]
dec_self_attn_subsequence_mask = get_attn_subsequence_mask(dec_inputs).cuda() # [batch_size, tgt_len, tgt_len]
# gt(a, b) a>b , return true
# >>> torch.gt(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
# tensor([[False, True], [False, False]])
dec_self_attn_mask = torch.gt((dec_self_attn_pad_mask +
dec_self_attn_subsequence_mask), 0).cuda() # [batch_size, tgt_len, tgt_len]
dec_enc_attn_mask = get_attn_pad_mask(dec_inputs, enc_inputs) # [batc_size, tgt_len, src_len]
dec_self_attns, dec_enc_attns = [], []
for layer in self.layers: # dec_outputs: [batch_size, tgt_len, d_model]
# dec_self_attn: [batch_size, n_heads, tgt_len, tgt_len]
# dec_enc_attn: [batch_size, h_heads, tgt_len, src_len]
dec_outputs, dec_self_attn, dec_enc_attn = layer(dec_outputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask)
dec_self_attns.append(dec_self_attn)
dec_enc_attns.append(dec_enc_attn)
return dec_outputs, dec_self_attns, dec_enc_attns
# Trasformer
class Transformer(nn.Module):
def __init__(self):
super(Transformer, self).__init__()
self.Encoder = Encoder().cuda()
self.Decoder = Decoder().cuda()
self.projection = nn.Linear(d_model, tgt_vocab_size, bias=False).cuda()
def forward(self, enc_inputs, dec_inputs): # enc_inputs: [batch_size, src_len]
# dec_inputs: [batch_size, tgt_len]
enc_outputs, enc_self_attns = self.Encoder(enc_inputs) # enc_outputs: [batch_size, src_len, d_model],
# enc_self_attns: [n_layers, batch_size, n_heads, src_len, src_len]
dec_outputs, dec_self_attns, dec_enc_attns = self.Decoder(
dec_inputs, enc_inputs, enc_outputs) # dec_outpus : [batch_size, tgt_len, d_model],
# dec_self_attns: [n_layers, batch_size, n_heads, tgt_len, tgt_len],
# dec_enc_attn : [n_layers, batch_size, tgt_len, src_len]
dec_logits = self.projection(dec_outputs) # dec_logits: [batch_size, tgt_len, tgt_vocab_size]
return dec_logits.view(-1, dec_logits.size(-1)), enc_self_attns, dec_self_attns, dec_enc_attns
# 定义网络
model = Transformer().cuda()
criterion = nn.CrossEntropyLoss(ignore_index=0) #忽略 占位符 索引为0.
optimizer = optim.SGD(model.parameters(), lr=1e-3, momentum=0.99)
# 训练Transformer
for epoch in range(50):
for enc_inputs, dec_inputs, dec_outputs in loader: # enc_inputs : [batch_size, src_len]
# dec_inputs : [batch_size, tgt_len]
# dec_outputs: [batch_size, tgt_len]
enc_inputs, dec_inputs, dec_outputs = enc_inputs.cuda(), dec_inputs.cuda(), dec_outputs.cuda()
outputs, enc_self_attns, dec_self_attns, dec_enc_attns = model(enc_inputs, dec_inputs)
# outputs: [batch_size * tgt_len, tgt_vocab_size]
loss = criterion(outputs, dec_outputs.view(-1))
print('Epoch:', '%04d' % (epoch + 1), 'loss =', '{:.6f}'.format(loss))
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 测试模型
def test(model, enc_input, start_symbol):
enc_outputs, enc_self_attns = model.Encoder(enc_input)
dec_input = torch.zeros(1, tgt_len).type_as(enc_input.data)
next_symbol = start_symbol
for i in range(0, tgt_len):
dec_input[0][i] = next_symbol
dec_outputs, _, _ = model.Decoder(dec_input, enc_input, enc_outputs)
projected = model.projection(dec_outputs)
prob = projected.squeeze(0).max(dim=-1, keepdim=False)[1]
next_word = prob.data[i]
next_symbol = next_word.item()
return dec_input
enc_inputs, _, _ = next(iter(loader))
predict_dec_input = test(model, enc_inputs[0].view(1, -1).cuda(), start_symbol=tgt_vocab["S"])
predict, _, _, _ = model(enc_inputs[0].view(1, -1).cuda(), predict_dec_input)
predict = predict.data.max(1, keepdim=True)[1]
print([src_idx2word[int(i)] for i in enc_inputs[0]], '->',
[idx2word[n.item()] for n in predict.squeeze()])