-
Notifications
You must be signed in to change notification settings - Fork 0
/
training.py
193 lines (149 loc) · 7.7 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# -*- coding: utf-8 -*-
"""
Created on Sat Jun 25 14:33:36 2022
@author: Jacob
"""
import numpy as np
import dice
import scoring
import scoreboard
import time
import pickle
def best_score(outcome, board, board_EV, score_lists, return_priority=False):
points = np.empty(board.num_categories)
points[:] = -np.inf
if board.bonussum != None:
maxsum = board.max_bonussum_remaining()
minsum = board.min_bonussum_remaining()
for category in range(board.num_categories):
if board.state[category] == 1:
category_points = score_lists[outcome.index][category]
new_index = board.index - 2**category
if board.bonussum != None:
if category > 5:
new_bonussum = board.bonussum
elif board.bonussum == 'bonus':
new_bonussum = 'bonus'
elif board.bonussum == 'nobonus':
new_bonussum = 'nobonus'
else:
new_bonussum = board.bonussum + category_points
new_maxsum = maxsum - (category + 1)*2
new_minsum = minsum + (category + 1)*3
if new_bonussum + new_maxsum < 0:
new_bonussum = 'nobonus'
elif new_bonussum + new_minsum >= 0:
new_bonussum = 'bonus'
# print(board, scoreboard.index_to_state(board.index, 15), board.index)
board_points = board_EV[new_index][new_bonussum]
else:
board_points = board_EV[new_index]
points[category] = category_points + board_points
if return_priority:
isorted = np.argsort(-points)
points_sorted = points[isorted]
isorted = isorted[points_sorted != -np.inf]
points_sorted = points_sorted[points_sorted != -np.inf]
return points_sorted, isorted
else:
return max(points)
def best_roll(outcomes, outcome_probabilities, board, board_EV, score_lists, M_reroll_list, num_rolls, current_dice=None):
best_scores = []
best_scores.append([best_score(outcome, board, board_EV, score_lists) for outcome in outcomes])
for rolls_remaining in range(1, num_rolls):
best_scores.append([max(M_reroll@best_scores[rolls_remaining - 1]) for M_reroll in M_reroll_list])
if current_dice==None:
# best_scores.append([max(M_reroll@best_scores[-1]) for M_reroll in M_reroll_list])
expected_score = best_scores[-1]@outcome_probabilities
return expected_score
else:
reroll_scores = M_reroll_list[current_dice.index]@best_scores[-1]
isorted = np.argsort(-reroll_scores)
expected_scores = reroll_scores[isorted]
dice_keep = np.array(current_dice.find_subsets())[isorted]
return expected_scores, dice_keep
def make_board_EV(num_dice, num_rolls, num_categories, filename):
tic = time.perf_counter()
total_board_states = 2**num_categories
board_states_done = 0
M_reroll_list = dice.get_reroll_matrices(num_dice)
outcomes = dice.all_outcomes(num_dice)
board_EV = np.zeros(total_board_states)
outcome_probabilities = np.array([outcome.probability() for outcome in outcomes])
score_lists = [[scoring.calculate_score(outcome, category) for category in range(num_categories)] for outcome in outcomes]
for turns_remaining in range(1, num_categories + 1):
states = scoreboard.all_states(turns_remaining, num_categories)
for state in states:
board = scoreboard.Scoreboard(state)
board_EV[board.index] = best_roll(outcomes, outcome_probabilities, board, board_EV,
score_lists, M_reroll_list, num_rolls)
board_states_done += len(states)
board_states_remaining = total_board_states - board_states_done
toc = time.perf_counter()
elapsed = toc - tic
rate = board_states_done/elapsed
expected_time_remaining = board_states_remaining/rate
expected_finish = time.time() + expected_time_remaining
time_string = time.strftime("%a, %d %b %Y %H:%M:%S", time.localtime(expected_finish))
print(f"# states done: {board_states_done} out of {total_board_states} (rate: {len(states)/elapsed:.2g}/s) \
\nExpected finished: {time_string}")
toc = time.perf_counter()
elapsed_total = toc - tic
print(f"Total elapsed time: {elapsed_total:.2g}s. ({num_categories} categories)")
np.save(f"expected_values/{filename}", board_EV)
def make_board_EV_bonus(num_dice, num_rolls, num_categories, filename):
tic = time.perf_counter()
total_board_states = 2**num_categories
board_states_done = 0
M_reroll_list = dice.get_reroll_matrices(num_dice)
outcomes = dice.all_outcomes(num_dice)
board_EV = [{} for _ in range(total_board_states)]
board_EV[0] = {'bonus': 50, 'nobonus': 0}
outcome_probabilities = np.array([outcome.probability() for outcome in outcomes])
score_lists = [[scoring.calculate_score(outcome, category) for category in range(num_categories)] for outcome in outcomes]
for turns_remaining in range(1, num_categories + 1):
states = scoreboard.all_states(turns_remaining, num_categories)
for state in states:
bonussums = scoreboard.Scoreboard(state).possible_bonussum()
for bonussum in bonussums:
board = scoreboard.Scoreboard(state, bonussum)
board_EV[board.index].update({bonussum: best_roll(outcomes, outcome_probabilities, board, board_EV,
score_lists, M_reroll_list, num_rolls)})
board_states_done += len(states)
board_states_remaining = total_board_states - board_states_done
toc = time.perf_counter()
elapsed = toc - tic
rate = board_states_done/elapsed
expected_time_remaining = board_states_remaining/rate
expected_finish = time.time() + expected_time_remaining
time_string = time.strftime("%a, %d %b %Y %H:%M:%S", time.localtime(expected_finish))
print(f"# states done: {board_states_done} out of {total_board_states} (rate: {len(states)/elapsed:.2g}/s) \
\nExpected finished: {time_string}")
toc = time.perf_counter()
elapsed_total = toc - tic
print(f"Total elapsed time: {elapsed_total:.2g}s. ({num_categories} categories)")
pickle_out = open(f"{filename}", "wb")
pickle.dump(board_EV, pickle_out)
pickle_out.close()
#%%
if __name__ == "__main__":
NUM_DICE_TOTAL = 5
NUM_ROLLS_TOTAL = 3
NUM_CATEGORIES = 15
# filename = "EV_nobonus"
# make_board_EV(NUM_DICE_TOTAL, NUM_ROLLS_TOTAL, NUM_CATEGORIES, filename)
#%%
filename = f"expected_values/EV_bonus.npy"
make_board_EV_bonus(NUM_DICE_TOTAL, NUM_ROLLS_TOTAL, NUM_CATEGORIES, filename)
# filehandler = open(filename, 'rb')
# U = pickle.load(filehandler)
# board_EV = np.load(filename, allow_pickle=True)
# M_reroll_list = dice.get_reroll_matrices(NUM_DICE_TOTAL)
# outcomes = dice.all_outcomes(NUM_DICE_TOTAL)
# outcome_probabilities = np.array([outcome.probability() for outcome in outcomes])
# state = np.ones(NUM_CATEGORIES)
# board = scoreboard.Scoreboard(state)
# score_lists = [[scoring.calculate_score(outcome, category) for category in range(NUM_CATEGORIES)] for outcome in outcomes]
# d = dice.Dice(cumlist=[2,0,0,1,1,1])
# expected_scores, dice_keep = best_roll(outcomes, outcome_probabilities, board,
# board_EV, score_lists, M_reroll_list, 2, current_dice=d)