SWI-Prolog dynamic C function calling

Jan Wielemaker
VU University of Amsterdam
The Netherlands
E-mail: J.Wielemaker@vu.nl

February 18, 2018

Abstract

This document describes library(ffi), a library to wrap calls to C functions in shared objects
(DLLs) dynamically. The library uses an external C preprocessor and the C header files to cre-
ate the calling template, register types such as structures and enums and make the values for
#define constants available from Prolog. Finally, the library provides predicates to allocate,
write and read native C data structures.

Contents

1 Introduction

1.1 Disadvantages v v e e e e e e e e e e e e e e
1.1.1 New complexities and disadvantages
.12 LImIitations v v v v ot e e e e e e e e e e e

2 Making C functions available as predicates

2.1 Calling variadic functions (f(X,y,...)« « o v o o v i e e e
2.2 Data ownership considerations oL oo
2.3 Handlingclosures e e e e e
2.4 Accessing preprocessor CONStANtS« v v v v vt e e e e e e e e e
2.5 Module awarenesso e e e e e e e e e e e e e

3 Accessing C data

3.1 PoInters e e e e e e
32 TYPES . i e e e e e e
321 BaSiCtypes o i e e e e e e e e e
322 Constructed typeso e e e e e e e e e
3.2.3 Thehighlevelinterface.
3.2.4 Thelowlevelinterface

4 library(clocations): Define resource locations for the ffi library
5 library(cerror): C interface error handling

6 Portability and platform notes
6.1 WIndows e e e e

14
14
14
14
15
16
17

20

21

22

1 Introduction

One of the oldest foreign interfaces for Prolog was provided by Quintus Prolog. In this interface the
C functions that are to be made available from Prolog are, together with their parameter types, declared
in Prolog. A subsequent call to 1load_foreign_files/1-3 attaches the C library, making the
functions available as predicates. This interface is also available from SICStus Prolog, Ciao and
SWI-Prolog by means of library(qpforeign). There are several ways to realise the interface. The
SWI-Prolog library generates C wrapper code, compiles this to a shared object and loads this. Other
implementations may use a library for dynamically calling C functions similar to what is underlying
the library that is the subject of this document. The Quintus interface only provides support for a
limited set of C types: long, double, single, char* and the Prolog specific types for atom
handles and term references (atom_t and term_t in SWI-Prolog).

Most native C library APIs rely on a much richer type system than what is supported by the
Quintus interface. Realising a Prolog wrapper for such an API typically consists of two parts: a C
part that wraps the original interface into one which simple types and operations and a Prolog part
that recreates a high-level interface that handles complex data structures using multiple calls on the
C layer.

With SWI-Prolog we took a different approach: a foreign predicate is a C function that takes an ar-
ray of term_t Prolog terms and can control Prolog success, failure, exceptions and non-determinism.
There is a rich set of C functions to examine term_t handles and make results available using unifi-
cation. This approach has several advantages and disadvantages:

Flexible The interface allows for writing high-level Prolog predicates entirely in C.

Portable Making the functions available as Prolog predicates is controlled from C using
PL_register_foreign (). As aresult the dynamic loader only has to load the shared ob-
ject can call a void function that takes no argumens. This functionality is easily provided on
any modern OS.

Fast As the entire translation from complex Prolog data to C data and back is done in C based on
efficient C low-level primitives, the result performs optimal.

Verbose Although not particularly hard, analysing and building Prolog terms from C is a rather ver-
bose activity and requires C programming skills that are not widespread amoung Prolog pro-
grammers.

Error prone Error handling and disposing partly created C data structures after an error is encoun-
tered often results in complicated control flow. To some extend this can be avoided by using the
C++ wrapper.

We promote SWI-Prolog as a glue language. Other languages in this area, such as Lua or Python,
provide a dynamic calling interface using the same spirit as the above described Quintus interface, but
with a wider coverage of supported types. This is in part facilitated because these languages have a
closer resemblance to C, making the mapping more straight forward.

One of the issues is access to user-defined C types, struct, union and union and enum, as well as
access to C preprocessor symbols (#define). The Python ctypes package fixes some of these
issues by extracting information from the library debug information. Its package pyswip provides an
interface to SWI-Prolog based on the ct ypes package. Studying this package provided inspiration
for the library described here.

https://github.com/yuce/pyswip

Modern C APIs typically abstract from concrete C data types such as int or 1ong. By defining
their own type system and binding that centrally to the base types using t ypedef declarations the
system is easily ported to different OSes and C compilers. For similar reasons they use a lot of
preprocessor macros. From pyswip/core.py we learn that these definitions from the SWI-Prolog
header SWI-Prolog.h are repeated in Python syntax and, as pyswip is a bit outdated, several of
the definitions are now incorrect or do not deal with e.g., portability to 64-bit machines correctly. We
need some way to extract up-to-date information from the library automatically.

All required information is available from e.g., the gcc debug information when compiled using
-gdwarf-2 -g3. However, most libraries are not compiled this way and, if another C compiler is
used, cannot be compiled this way. Often debug information is stripped from release binaries.

This library opts for a fairly portable route, but requires access to a C preprocessor and the header
files that come with the library. This results in code as below to get access to the Linux statfs()
function, providing information about the file system on which a file resides:

cpp_const (" ST_MANDLOCK') .
cpp_const (" ST_NOATIME') .

:— c_import ("#include <sys/vfs.h>",
[1libc 1,
[statfs(string, -struct(statfs), [int])
1).

The c_import/3 directive is compiled into Prolog statements that represent the involved types,
requested macros (see section 2.4) and a lazy binding definition. The first call to stat fs/3 actually
loads the library and creates the wrapper predicate. The type information is obtained by processing
the first (string) argument using the C preprocessor and parsing the result into a Prolog AST. For this
reason the library contains a full parser of the C99 standard including GCC extensions. Given the
AST and the above declaration we can

e Find the prototype for statfs()

e Find all involved types by expanding the parameter types and return type until we reach to core
C types.

e Find the constants represented by ST _MANDLOCK, etc. by adding variable declarations to the
provided header and examining the AST that represents these variable declarations.

e The Prolog parameter declaration is verified to be consistent with the prototype and is used to
guide the mapping from Prolog data to C and back.

As a result, we can verify the file system supports access time recording. To do this we first
define stat fs/2, dealing with the POSIX success/error conventions. The FsStat variable is bound
to a pointer wrapper that maintains the type (struct statfs). The utility c_1oad/2 fetches the

[f_flags] field from the structure pointer. The * ST_NOATIME' is replaced by its numerical value
based on term expansion in Prolog.

statfs (File, FsStat) :-—
statfs(File, FsStat, Status),
posix_status (Status, statfs, file, File).

maintains_access_time (File) :-
statfs(File, FsStat),
c_load(FsStat[f_flags], Flags),
Flags /\ 'ST_NOATIME’ =:= 0.

1.1 Disadvantages

Above we created a binding that accesses a C library call and extracts information from the filled
structure without writing any C. We did not need to worry about the structure layout, nor about the type
of the f_flags field (__fsword_t). This seems to good to be true. What are the disadvantages? We
give them below, split into new complexities and limitations. For each we hint at the (im)possibility
for remedying.

1.1.1 New complexities and disadvantages

Finding a compatible C preprocessor and headers Our library uses library(process) to talk to the
C preprocessor and assumes this is correctly configured to find the header files needed for the target
libraries. This currently is configured for Linux and gcc. This should cover other popular options
and a mechanism for the user to provide rules that match the target.

On Windows, MinGW can provide a compatible toolchain. On MacOS Xcode needs to be in-
stalled. Note that applications may provide precompiled . g1 f files (see gcompile/1) which allows
a user to access the foreign code without access to a C preprocessor and the header files.

Finding libraries The interface requires the real file that represents the shared object to be loaded.
C toolchains come with a complicated OS and compiler dependent search strategy to find the concrete
library file for the correct architecture and of the correct version. All we can probably do is to replicate
some of this process for popular platforms, allow users to extend the rules and ultimately the user can
specify the location as an absolute path.

Portability The portability is notably limited by the low-level library doing the dynamic calling of
C functions. This library is in part written in assembler and requires details on the target C calling
conventions, i.e., which parameters are placed where and where can the return value be found. The
Prolog wrapper around that is only a new pages and thus easily replaced to use another low-level
library.

Performance Implemented on top of the existing C-interface, this interface is by definition slower.
In addition, Prolog wrappers may be generated to allocate memory for output arguments and the
allocated memory is subject to malloc and the Prolog atom garbage collection while in several cases
an automatic variable (allocated on the stack) suffices to hold the output. The automatically generated
interface often does not provide a natural interface to the target resource, in which case a Prolog library

http://www.mingw.org/

is required to provide the desired interface. Although this is typically far less work than doing this in
C, the result generally performs less.

1.1.2 Limitations

Struct pointers, but no struct The underlying libffi library cannot create dynamic calls to functions
that have a structure as argument, nor deal with functions that return a struct. For example we cannot
wrap mallinfo() with the synopsis as below.

#include <malloc.h>

struct mallinfo mallinfo (void);

Accessing such a function is possible by defining a C source using the code below. This file can be
compiled to a shared object and the source can be used by this library to access our wrapper library.
The disadvantage of this approach is that it requires a fully operational C development toolchain,
knowledge on how to operate it and the need to create and deploy the wrapper shared object. Unlike
the native SWI-Prolog approach though our library is completely independent from SWI-Prolog and
thus SWI-Prolog.h nor the library 1ibswipl. so is needed.

#include <malloc.h>

void

pl_mallinfo(struct mallinfo xinfo)
{ »info = pl_mallinfo();

}

We assume that it is possible to extend the low-level assembly code used to build the dynamic calls to
support structures if it is told how large the structures are.

Bitfields The current version does not support bitfields (unsigned name : Dbits) fields in
structs.
This is not a fundamental restriction see also Struct layout below.

Struct layout The Prolog library rewrites a struct type into a sequence of fields where each field is
either a basic scalar type, a struct, union or enum or an array of any of these. It first computes the
layout, size and alignment of sub structs and unions. The layout of the struct is computed by placing
the fields linearly in memory while adding padding fields required to satisfy the alignment restrictions
(see c_alignof/2).

This is the default algorithm used by C compilers, but many compilers support additional attributes
to control the layout. Such attributes are currently ignored. Accessing a struct with such attributes
will lead to incorrect values. Additional rules can be added to resolve this.

Inline functions and macros Part of the C API of a library may look like functions but are in fact
implemented as inline functions or macros. For example, the g1 ibc (glibc is the standard C runtime
library on Linux) function stat() to obtain information about an entry in the filesystem has the synopsis
below. Binding this as stat() though results in an existence error.

https://sourceware.org/libffi/

#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

int stat (const char xpathname, struct stat =xstatbuf);

What is wrong? Going through the headers we find stat() as an inline function that calls __xstat() with
an extra parameter that defines the version that should be _-STAT_VER’. We now have two options.
We can use the same strategy as for mallinfo() above and define our own wrapper library that provides
a stat() as a proper function or we can use the code below.

cpp_const (" _STAT_VER’) .

:— c_import ("#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>",
[libc 1,
[/__xstat’ (int, string, —-struct (stat), [int])

1) .

stat (File, Stat) :-
! xstat’ (' _STAT_VER’, File, Stat, Status),
posix_status (Status, stat, file, File).

The advantage of the above is that no wrapper library is needed, but the disadvantage is that this only
works for glibc. Other POSIX runtime libraries may provide stat() as a function or do something
similar to, but incompatible with, glibc.

2 Making C functions available as predicates

The binding is realised using c_import/3

c_import(+Header, +Flags, +Functions)
Import Functions from libraries provided by Flags. The Header is a string providing C source
text that makes the types of the imported functions available. This text is handed to the
configured C preprocessor. Normally, this string contains a series of #include (header)
statements. For simple projects it is also possible to supply the actual C source file, e.g.,
"#include \"my_c.c\"" (note the escaped double quotes).

Flags is a list of flags that both provide the optional C flags such as —I and the libraries where
the functions can be found. Libraries may be written as e.g., —1c, 1ibc or as a compound
term for absolute_file_name/3. The library specification is resolved to the actual library
file by c_.1ib_path/2 from library(clocations). Finally, a term pkg_config(Pkg, ...) may
be specified. This runs the pkg-config program using the provided options to obtain the
required flags. The example below attaches the uchardet library.'

'A complete implementation is in the file uchardet . pl of the examples directory.

:— c_import ("#include <uchardet.h>",
[pkg_config(uchardet, ’'--cflags’, '—--1libs’) 1],
).

Functions is a list of functions that must be made available as Prolog predicates. Each specifi-
cation is a compound term whose name is the name of the C function to import. The arguments
of the compound provide additional hints for this library for mapping the native C types to Pro-
log types. The compound has the same number of arguments as the C function or one more if
the return value of the function is used. This last argument must be embedded in a list. The
construct [void] may be used to forcefully ignore the return value of a function. Note that it
is bad practice to ignore the return value if this may indicate an error condition.

Each argument is optionally wrapped in +type or —type to indicate an input or output argu-
ment. An output argument is realised by passing a pointer to an object of the required type and,
upon completion of the function, reading the value from this pointer. Next, the argument may
be wrapped in » (type) to indicate it is a pointer. The supported types are given below:

int
The argument is to be mapped to a Prolog integer. This is compatible with C integers of
all supported sizes. If the argument is an input argument a domain check is performed to
validate that the (unbounded) Prolog integer can be represented by the bounded C integer.
If the argument is an output argument the C type must be a pointer to a C integer. A buffer
of sufficient size is allocated and after completion of the function the result is extracted
from the pointer.

The int value is also compatible with an enum typed C argument, returning the enum
value as an integer. See also enum below.

float
Supports C floats and doubles.

string

string(Encoding)
As input argument, transform the Prolog data into a C string. Encoding defines the
mapping from Prolog Unicode to the C representation. The default is text, using the
default encoding of the OS. Other values are 1so_latin_1, ut£8 and wchar_t. This
Prolog type is compatible with the C type char«*, except when Encoding is wchar_t.
In this case the C type must be a pointer to an integer type of the same size as wchar_t.

atom

atom(Encoding)
As string and string(Encoding) but when used for output arguments the variable is
unified with an atom rather than a string.

struct(Name)
Argument is a structure of the given name. If this is an input argument, a pointer to a
structure must be supplied. If it is an output argument a pointer is allocated and returned.

union(Name)
Argument is an union of the given name. Otherwise this is handled the same way as
struct(Name).

enum(Name)
Argument is an enum of the given name. An enum member is mapped to a Prolog atom.
The wrapper translates between the atom and C integer that represent the enum encoding.
Input and output arguments are handled the same way as int.

enum
This can be used for enum arguments if the name of the enum is not important or un-
known. Conversion to or from atoms is performed as with the enum(Name) specification.
Note that an enum can also be specified as int, which stops converstion between atoms
and the integer representation.

PredicateName(Arg, . ..)
Argument is a closure. The arguments of the function term are the predicate arguments
for the predicate to which the closure is mapped and is subject to the same rules as the
predicate arguments described in this list. See section 2.3

For output arguments (the function return or using a pointer argument that is filled by the func-
tion) we need to deal with ownership transfer. This is achieved using the construct ~(Type,
FreeFunc). See section 2.2 for details.

Finally, the following constructs are supported:

Function(Arg, ...) as PredicateName
Link the C function Function to the Prolog predicate PredicateName (an atom) rather
than using the same name for the predicate and C function. This can be used to avoid
conflicts with, e.g., built-in predicates or to allow for wrapper predicate that is named
after the original C function.

[Specification]
If the specifiation is wrapped in a list, it is optional, i.e., if the target function cannot
be found in the supplied headers it is silently ignored. This can be used together with
:— if (current_predicate (Name/Arity)) . to deal with portability issues.

The arguments to this directive are expanded using rules for c_.define/2.

c_define(+7erm, -Replacement)
This hook is used for compiling c_import/3. As c_import/3 is processed using
term expansion/2 we cannot use rules. This is impractical as libraries and the called C
functions and their arguments may be complex to write and version or platform dependent.
This can be resolved by defining the predicate c_define/2 and making it available in the
context of the c_import /3 directive. See examples/python/python.pl for examples.

Note that c_define/2 has no relation to C #define. See also cpp_macro/1.

2.1 Calling variadic functions (f(x,y,...)

The current version has limited support for variadic functions, i.e., functions whose prototype ar-
gument list ends with The arguments before the ... are processed normally. Remaining
arguments must be declared and are trusted. This implies it is not yet possible to call such functions
with arbitrary arguments, but it is possible to call them with a specific argument list. For example, we
can print two floating point numbers using the code below. Note that we use the ... as name construct
which allows is to create multiple call patterns to printf()

:— use_module (library (ffi)) .

:— c_import ("#include <stdio.h>",
["-1c" 1,
[printf (string, double, double, [void]) as printf_dd
1).

test (X, Y) :—
printf_dd("You entered %f and %$f\n", X, Y).

Excess arguments (those matching the . . .) must use C types rather than Prolog types. The ffi library
automatically applies the default parameter type promotion rules and thus, e.g., short is passed as
int.

2.2 Data ownership considerations

An important aspect of C interfaces is dealing with ownership of data. Arithmetic values are simply
copied, avoiding this issue. Arrays (including strings) and structures however are often dynamically
allocated on the heap and must be released at some point. We distinguish three conventions:

1. The called function returns a pointer to a static memory area. In this case the receiver can read
the returned data and must copy data it wishes to keep before calling the API again. This style
lost popularity as it is not thread-safe.

2. Many modern APIs force the receiver to allocate memory for receiving the data. Especially for
small amount of data (often structures) the (C) client can use an automatic variable to receive
the data, e.g.,

{ struct stat buf;

if (stat(".", &buf) ==)

This style is problematic if the amount of data is unknown and therefore the buffer can be too
small. In this case the API often returns incomplete data and an error indicating the data is
incomplete and often the required size of the buffer.

3. Finally, the API may return a pointer to dynamically allocated memory. In this case the API
also provides a function that allows the client to tell the API it is finished with the data. The
release function may either decrement a reference count or immediately destroy the data. For
example, most of the functions from the C library that use this style demand the caller to call
free() when they no longer need the data.

The Prolog FFI can deal with all three styles. In the second scenario we cannot use automatic
variables as the lifetime of the Prolog call is not immedately related to a C stack frame. Instead, we

10

use c_alloc/2 to allocate space for the output. Memory allocated with c_alloc/2 is subject to
atom garbage collection. For the first and last option, the FFI library creates a pointer object just as
c_alloc/2. As the called function created the object we cannot call free() on it.

The default is to do nothing. This is correct for the first style but causes memory leaks for the third
style. In this case, the argument may be declared using ~(Type, FreeFunc). Below are a couple of ex-
amples. The first is a trivial example based on the C standard library function strdup(). The other two
examples are taken from the Python interface. Most of the Python interface functions return a pointer
to a PyOb ject type where the receiver is required to call Py_DECREF() when done. PyDict_New()
returns such an object and PyErr_Fetch() returns three objects using the output argument calling con-
vention. Note that we call MyPy_DECREF() which is defined in the small support library because (1)
Py_DECREF() is a macro and (2) Prolog will call the release function in the garbage collection thread
and Python does not allow Py_DECREF() to be called asynchronously.

1. strdup (string, [~ (string, free)]l])

2. 'PyDict_New’ ([~ (x'PyObject’, ’'MyPy_DECREF’)]

3. 'PyErr_Fetch’ (- (7 (x"PyObject’, ’'MyPy_DECREF’
- (" (' PyObject’, ’'MyPy_DECREF’
— (7 (x"PyObject’, ’'MyPy_DECREF’

),
),
))

)
)
)
)

2.3 Handling closures

The term closure refers to a pointer to a C function that is passed to a C function or placed in a
structure. The registered function is called on certain events. An example is gsort() from the standard
C library that accepts a closure to compare two elements of the array that is to be sorted. In this section
we explain how gsort() can be used through this library.” Below we declare the function.

:— use_module (library (ffi)) .
:— c_import ("#include <stdlib.h>",
[libc 1,
[gsort (*void, int, int, gcompare (*void, =*void, [int]))

1.

The declaration above creates a predicate gsort/3 that performs a callback on the predicate
gcompare/3. Note that, unlike in C, we provide a predefined predicate that is called. This is
done such that the library can create a closure object that matches the requested function type. If the
called predicate needs to be dynamically determined there are two options:

1. Use “Function(Arg, ...) as PredicateName” to bind different variations to different predicates.

2. Call the specific closure predicate from the generic one after making it available as a hook
definition or global variable.

In our example we create gqcompare/3 as a function that operates on an integer array. The
example uses c_load/4 to load an int indirectly over the void«* argument. Prolog compare/3
is used to compare the elements and the result is translated to an int to comply with the gsort()
calling convention.

The gsort() function is used for educational purposes and because it is widely available in C runtime libraries.

11

gcompare (Ptrl, Ptr2, Diff) :-
c_load(Ptrl, 0, int, I1),
c_load(Ptr2, 0, int, I2),
compare (DiffA, I1, 1I2),
diff_int(DiffA, Diff).

diff_int(<,-1).
diff_int (=, 0).
diff_int (>, 1).

Given this, we can sort an array of integers:

sort_int_array (Ptr, Length) :-
c_sizeof (int, ESize),
gsort (Ptr, Length, ESize).

A complete example to create an array of C int from a Prolog list, sort it and translate the result back
to Prolog is below.

sort_int_list (List, Sorted) :-
length (List, Count),
c_alloc (Data, int[Count]),
fill array(List, 0, Data),
c_sizeof (int, ESize),
gsort (Data, Count, ESize),
read_array (0, Count, Data, Sorted).

fill_array([], _, _).

fill array([H|T], I, Data) :-
c_store (Datal[I], H),
I2 is I + 1,
fill _array (T, I2, Data).

read_array (I, Count, Data, [HI|T]) :-

I < Count,

Y

c_load (Data[I], H),

I2 is I + 1,

read_array(I2, Count, Data, T).

read_array(_, _, _, [1).

The predicate c_store/2 provides support for assigning a struct field with a closure that calls a
Prolog predicate.

12

2.4 Accessing preprocessor constants

C libraries tend to make constants available using C preprocessor macros. In many cases, these are
combined using bitwise or to form flags. The example below is a commonly seen snippet in C.

int fd = open("myfile", O_CREATE|O_WRONLY) ;

Constants like O_CREATE are made available from Prolog by defining the predicate cpp_const/1
before using the c_import/3 directive. This cause c_import/3 to add code to the header to
initialize global variables with the macro value. After parsing the AST fragment that initializes the
constant is evaluated to an integer, float or string literal.

cpp-const(-Name)
is nondet. This hook predicate can be defined in the same module as from where the
c_import/3 directive is used. It causes c_import/3 to create clauses cpp_const/2,
cpp-const(Name, Value). These clauses are used by a rule for system:term_expansion/2 if
library(ffi) is imported into the current context. This causes the following terms to be expanded:

Atom
An atom that matches a defined cpp_const /2 fact is expanded into the related constant.

*C’(:Expression)
Expand Expression and evaluate it. If the expression is module qualified add the indicated
module to the modules in which rules for cpp_const /2 are searched. The evaluation
of Expression recognises the C operators |, ~ and &. The remainder is handed to Prolog
is/2. For example, we can write the following

cpp_const (" O_CREATE") .
cpp_const (" O_WRONLY") .

:— c_import ("#include <sys/types.h>
finclude <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>",
["=1c” 1,
[open(string, int, [int]) as c_open

1) .

test (File) :-—-
c_open (File, 'C’ (' O_CREATE'’ |’ O_WRONLY'), Fd),
posix_status (Fd, open, file, File),

2.5 Module awareness

User defined types (structures, unions and enums) are compiled into Prolog predicates. These defini-
tions are local to the module that uses the c_import /3 statement.

13

3 Accessing C data

Interaction with native C functions requires the ability to work with C data structures from Prolog.
Arithmetic types (various sizes of integers and floating point numbers) are simple as such parameters
are easily converted from Prolog numbers and the return value is easily converted back. Arithmetic
types have no interesting internal structure and need no memory management such asmalloc () and
free ().

Arrays and structures however do have internal structure and typically do need memory manage-
ment. Managing such data is achieved in two layers. The high level layer reasons in terms of abstract
types, while the low level layer deals with pointers and access to primitive C (scalar) data types.

3.1 Pointers

The core of the memory access functions is formed by a SWI-Prolog blob of type c_ptzr. Such a
blob wraps a C pointer. It has the following properties:

e The type is an atom or a term st ruct (Name), union (Name) or enum (Name) that repre-
sents the C type of an element.

e The size is an integer representing the size of an element in bytes.
e The count represents the number of elements. It is —1 if this is not know.

e An indirection level. If O (zero), it is a pointer to an (array of) object (s) of the indicated
type. If 1 it is a pointer to a pointer of objects of the indicated type, etc.

e An optionally associated free function is called if the blob is garbage collected by the atom
garbage collector.

Pointer blobs are created using predicates c_.alloc/2, c_.cast/3 and c_load/?2 if the ad-
dressed object is not a scalar type. Pointer blobs are also created by C functions if the return value is a
pointer or an argument is declared as an output argument returning a pointer. A pointer allocated with
c_alloc/2 owns the pointer, reclaiming the associated memory as the blob is garbage collected.
Function return and output pointers may be declared to own the pointe using the ~ (Type, Free)
type declaration. See c_import /3.

Pointer blobs are subject to (atom) garbage collection. Atom reference counts are used to avoid
collecting of pointers that depend on other pointers. Notable c_load/2 references the original
pointer if it returns a pointer inside the area of the original pointer and c_store/2 references the
Value if the Value is a pointer.

3.2 Types

A type is either a primitive type or a constructed type.

3.2.1 Basic types

The following basic types are identified:

Signed integers char, short, int, long and longlong

14

Unsigned integers uchar, ushort, uint, ulong and ulonglong
Floats float and double

Pointers * (Type), closure (pointer to a function)

In addition, the type wchar_t is recognised by the library to facilitate portable exchange of
Unicode text represented as wide character strings.

3.2.2 Constructed types

The constructed types are st ruct (Name), union (Name) and enum (Name) . The c_import/3
directive extracts types that are (transitively) reachable from imported functions to the current module.
In addition, types can be defined using c_st ruct /1 and c_.union/1. Such declarations can be used
to create and access C binary data without using library functions.

c_struct(+Name, +Fields)
Declare a C structure with name Name. Fields is a list of field specifications of the form:

e f (Name, Type)
Where Type is one of

e A primitive type (char, uchar, ...)
e struct (Name)

e union (Name)

e cnum (Name)

e *(Type)

e array (Type, Size)

This directive is normally used by c_import /3 to create type information for structures that
are involved in functions that are imported. This directive may be used explicitly in combination
with the C memory access predicates to read or write memory using C binary representation.

c_union(+Name, +Fields)
Declare a C union with name Name. Fields is a list of fields using the same conventions as
c_struct/2.

The defined types may be examined using the following interface:

c_current_enum(’Name, :Enum, ?Int)
True when Id is a member of Enum with Value.

c_current_struct(:Name) [nondet]
c_current_struct(:Name, ?Size, ?Align) [nondet]
Total size of the struct in bytes and alignment restrictions.

c_current_struct(:Name) [nondet]
c_current_struct(:Name, ?Size, ?Align) [nondet]
Total size of the struct in bytes and alignment restrictions.

15

c_current_struct_field(:Name, ?Field, ?Offset, ?Type)
Fact to provide efficient access to fields

c_current_union(: Name) [nondet]
c_current_union(:Name, ?Size, ?Align) [nondet]
Total size of the union in bytes and alignment restrictions.

c_current_union(: Name) [nondet]
c_current_union(:Name, ?Size, ?Align) [nondet]
Total size of the union in bytes and alignment restrictions.

c_current_union _field(:Name, ?Field, ?Type)
Fact to provide efficient access to fields

c_current_typedef(:Name, :Type) [nondet]
True when Name is a typedef name for Type.

c_expand_type(:Typeln, :TypeOut)
Expand user defined types to arrive at the core type.

c_type_size_align(: Type, -Size, -Alignment) [det]
True when Type must be aligned at Alignment and is of size Size.

3.2.3 The high level interface

c_alloc(-Ptr, : TypeAndlInit) [det]
Allocate memory for a C object of Type and optionally initialse the data. TypeAndInit can take
several forms:

A plain type Allocate an array to hold a single object of the given type.
Type[Count] Allocate an array to hold Count objects of Type.

Type[] = Init If Init is data that can be used to initialize an array of objects of Type, allocate
an array of sufficient size and initialize each element with data from Init. The following
combinations of Type and Init are supported:

char[] = Text Where Text is a valid Prolog representation for text: an atom, string, list
of character codes or list of characters. The Prolog Unicode data is encoded using the
native multibyte encoding of the OS.

char (Encoding) [] = Text Same as above, using a specific encoding. Encoding is
one of text (as above), utf8 or iso_latin_1.

Type[] = List If Data is a list, allocate an array of the length of the list and store each
element in the corresponding location of the array.

Type = Value Same as Type[] = [Value].
To be done

- © error generation
- : support enum and struct initialization from atoms and dicts.

c_cast(:Type, +Ptrin, -PtrOut)
Cast a pointer. Type is one of:

16

address
Unify PtrOut with an integer that reflects the address of the pointer.

([Count], Type)
Create a pointer to Count elements of Type.

Type
Create a pointer to an unknown number of elements of Type.

c_load(:Location, -Value) [det]
Load a C value indirect from Location. Location is a pointer, postfixed with zero or more
one-element lists. Like JavaScript, the array postfix notation is used to access array elements
as well as struct or union fields. Value depends on the type of the addressed location:

Type Prolog value
scalar | number
struct | pointer
union | pointer

enum | atom

pointer | pointer

c_store(:Location, +Value)
Store a C value indirect at Location. See c_1oad/2 for the location syntax. In addition to the
conversions provided by c_1oad/2, c_store/2 supports setting a struct field to a closure.
Consider the following declaration:

struct demo_func
{ int (*mul_1i) (int, int);

bi

We can initialise an instance of this structure holding a C function pointer that calls the predicate
mymul/ 3 as follows:

c_alloc (Ptr, struct (demo_func)),
c_store(Ptr[mul_i], mymul (int, int, [int])),

c_nil(-Ptr) [det]
Unify Ptr with a (void) NULL pointer.

c_is_nil(@ Prr) [semidet]
True when Ptr is a pointer object representing a NULL pointer.
3.2.4 The low level interface

The low-level interface is build around a SWI-Prolog blob that represents a C pointer with some
metadata. A blob is similar to a Prolog atom, but blobs are typed and they are intended to deal with
binary data.

17

c_calloc(-Ptr, +Type, +Size, +Count) [det]
Allocate a chunk of memory similar to the C calloc () function. The chunk is associated
with the created Ptr, a blob of type c_ptr (see blob/2). The content of the chunk is filled
with O-bytes. If the blob is garbage collected by the atom garbage collector the allocated chunk

is freed.
Arguments
Type is the represented C type. It is either an atom or a term of the shape
struct (Name), union (Name) or enum (Name) . The atomic
type name is not interpreted. See also c_typeof/2.
Size is the size of a single element in bytes, i.e., should be set to
sizeof (Type). As this low level function doesn’t know how
large a structure or union is, this figure must be supplied by the
high level predicates.
Count is the number of elements in the array.
c_free(+Ptr) [det]

Free the chunk associated with Ptr by calling the registered release function immediately. This
may be used to reduce the memory foodprint without waiting for the atom garbage collector.
The blob itself can only be reclaimed by the atom garbage collector.

The type release function is non-NULL if the block as allocated using c_alloc/2 or a function
was associated with a pointer created from an output argument or the foreign function return
value using the ~ (Type, Free) mechanism.

c_disown(+Ptr) [det]

Clear the release function associated with the blob. This implies that the block associated with
the pointer is not released when the blob is garbage collected. This can be used to transfer
ownership of a memory blob allocated using c_.alloc/2 to the foreign application. The
foreign application must call PL_free() from the SWI-Prolog API to release the memory. On
systems where the heap is not associated with a foreign module, the C library free () function
may be used as well. Using free () works on all Unix systems we are aware of, but does not
work on Windows.

c_alloc_string(-Ptr, +Data, +Encoding) [det]

Create a C char or wchar_t string from Prolog text Data. Data is an atom, string, code list,
char list or integer. The text is encoded according to Encoding, whichisone of iso_latin_1,
utf8, octet, text orwchar_t. The encodings octet and iso_latin_1 are synonym.
The conversion may raise a representation_error exception if the encoding cannot
represent all code points in Data. The resulting string or wide string is nul-terminated. Note
that Data may contain code point O (zero). The length of the string can be accessed using
c_dim/ 3. The reported length includes the terminating nul code.

This predicate is normally accessed through the high level interface provided by c_.alloc/2.
cload(+Ptr, +Offset, + Type, -Value) [det]
Fetch a C arithmetic value of Type at Offset from the pointer. Value is unified with an integer or

floating point number. If the size of the chunk behind the pointer is known, Offset is validated
to be inside the chunk represented by Ptr. Pointers may

18

c_load_string(+Ptr, -Data, +As, +Encoding) [det]

c_load_string(+Ptr, +Length, -Data, +As, +Encoding) [det]
Assuming Ptr points at text, either char or wchar_t, extract the value to Prolog. The
c_load_string/4 variant assumes the text is nul-terminated.

Arguments
As defines the resulting Prolog type and is one of atom, string,
codes or chars
Encoding isoneof iso_latin_1, octet,utf8, text or wchar_t.
c_load_string(+Ptr, -Data, +As, +Encoding) [det]
c_load_string(+Ptr, +Length, -Data, +As, +Encoding) [det]

Assuming Ptr points at text, either char or wchar_t, extract the value to Prolog. The
c_load_string/4 variant assumes the text is nul-terminated.

Arguments
As defines the resulting Prolog type and is one of atom, string,
codes or chars
Encoding isoneof iso_latin_1,octet,utf8, text orwchar_t.
c_store(+Ptr, +Offset, +Type, +Value) [det]

Store a C scalar value of type Type at Offset into Ptr. If Value is a pointer, its reference count is
incremented to ensure it is not garbage collected before Ptr is garbage collected.

c_offset(+Ptr0, +Offset, +Type, +Size, +Count, -Ptr) [det]
Get a pointer to some location inside the chunk P#r0. This is currently used to get a stand-alone
pointer to a struct embedded in another struct or a struct from an array of structs. Note that this
is not for accessing pointers inside a struct.

Creating a pointer inside an existing chunk increments the reference count of Ptr0. Reclaiming
the two pointers requires two atom garbage collection cycles, one to reclaim the sub-pointer Ptr
and one to reclaim Ptr0.

The c_of fset /5 primitive can also be used to cast a pointer, i.e., reinterpret its contents as if
the pointer points at data of a different type.

c_typeof(+Ptr, -Type) [det]
True when Type is the Type used to create Ptr using c_calloc/4 or c_.offset /6.
Arguments
Type is an atom or term of the shape st ruct (Name), union (Name)
or enum (Name) . Type may be mapped in zero or more *(Type)
terms, representing the levels of pointer indirection.
c_sizeof(+Type, -Bytes) [semidet]

True when Bytes is the size of the C scalar type Type. Only supports basic C types. Fails
silently on user defined types.

c_alignof(+Type, -Bytes) [semidet]
True when Bytes is the mininal alignment for the C scalar type Type. Only supports basic C
types. Fails silently on user defined types. This value is used to compute the layout of structs.

c_address(+Ptr, -Address) [det]
True when Address is the (signed) integer address pointed at by Ptr.

19

c_dim(+Ptr, -Count, -ElemSize) [det]
True when Ptr holds Count elements of size ElemSize. Both Count and ElemSize are O (zero) if
the value is not known.

4 library(clocations): Define resource locations for the ffi library

This module provides the mapping from library names to concrete files that can be loaded. This is used
by c_import /3. While C compilers typically allow one to specify a library as, e.g., —1m, the actual
naming and physical location of the file providing this library is compiler and system dependent.

This module defines c_1ib_path/2 to find the concrete file implementing a C library. Hooks
may be used to extend this predicate:

e library path hook/2 is called first by c_1ib_path/2 and may redefine the entire pro-
cess.

e cpu_alias/2 may be used if 1dconfig —-p is used to verify that a library is compatible
with the current architecture of the SWI-Prolog process.

cpp(-Command, -Argv) [det]
Provide the Command and Argv for process_create/3 to call the C proprocessor reading
the C input from standard input.

c_lib_path(+Spec, -Path, +Options) [det]
Find a shared object from Spec. Spec is one of:

Concrete file If spec is an atom or string denoting an existing file, this is used.

Alias(File) Handled to absolute_file name/3 using the options access (execute)
and extensions([’’,Ext]), where Ext is the value for the Prolog flag
shared_object_extension

Plain atom Platform dependent search. Currently implemented for

e Systems that support 1dconfig -p (e.g., Linux)

Additional search strategies may be realised by defining rules for 1ibrary_path_hook/2
with the same signature.

To be done Extend the platform specific search strategies.

ffi:library_path_hook(+Name, -Path, +Options) [semidet, multifile]
Multifile hook that can be defined to resolve a library to a concrete file. The hook is tried as
first option by c_1ib_path/2.

Idconfig(?Name, ?Path, ?Version, ?Flags) [nondet]
True when Name is the base name of a library in the Idconfig cache.

20

Arguments

Name is the base name of the library, without version or extension.
Path is the absolute file name of the library

Version is the version extension as an atom

Flags is a list of atoms with flags about the library

Idconfig_flush
Flush the library cache maintained for Idconfig.

5 library(cerror): C interface error handling

This module provides common routines to map error codes into apropriate actions in Prolog. Below
is a typical example mapping the stat fs () function:

:— module (libc_files,
[statfs/2
1) .

:— use_module (library (cinvoke)) .

:— c_import ("#include <sys/vfs.h>",
[libc 1,
[statfs(+string, -struct(statfs), [-int])
1).

statfs (File, FsStat) :-—
statfs(File, FsStat, Status),
posix_status (Status, statfs, file, File).

posix_status(+Code) [det]

posix_status(+Code, +Action, +Type, +Argument) [det]
These predicates may be used to map POSIX int error return status into a suitable Prolog
response. If Code is non-negative the predicate simply succeeds. For other cases it retrieves the
error code using c_errno/1 and translates the error into a suitable Prolog exception.

posix_ptr_status(+Code) [det]
posix_ptr_status(+Code, +Action, +Type, +Argument) [det]
Handle the return code from POSIX functions that return a NULL pointer on error.

posix_raise_error [det]
posix_raise_error(+Action, +Type, +Argument) [det]
Raise an error from a POSIX errno code.

Errors posix_error (Errno, String)

21

6 Portability and platform notes

This interface requires a C preprocessor and C header files that are compatible with the libraries that
must be accessed. So far we used gcc and the closely compatible c1ang and MinGW compilers.

To make ffi work with other compilers the predicate cpp/2 defined in clocations.pl must
be extended or hooked using ffi:cpp_hook/2 to tell this library how to call the C preprocessor such that
it reads from standard input and writes to standard input. If this is not possible cdecls.c must be
extended to deal with proprocessors that cannot read from standard input.

C compilers often come with language extensions that are notably used in the standard headers
which are needed to access system libraries and are often included from headers shipped with many
projects. These may result in warnings from our C parser. The way to diagnose and fix such issues is
to first collect the C output by enabling a debug channal and reloading your Prolog file:

?— debug (ffi (dump (cpp_output, 'myfile.h’))).
?— [myfile].

Now, examine myfile.h and find the declarations that cannot be parsed. Next, run the code below,
replacing the argument of ast /1 with a string containing the text that could not be parsed, try to find
out why it fails and extend the tokenizer from ctokens.pl and/or the parser in cparser.pl,

$ swipl test/debug_types.pl
?—- ast ("failed declaration").

Finding resources such as libraries is implemented by clocations.pl. This file must be extended
to improve support on platforms.

6.1 Windows

We have used this interface successfully with MinGW. Make sure that the directory holding gcc is in
$PATHS.

22

http://www.mingw.org/

	Introduction
	Disadvantages
	New complexities and disadvantages
	Limitations

	Making C functions available as predicates
	Calling variadic functions (f(x,y,...)
	Data ownership considerations
	Handling closures
	Accessing preprocessor constants
	Module awareness

	Accessing C data
	Pointers
	Types
	Basic types
	Constructed types
	The high level interface
	The low level interface

	library(clocations): Define resource locations for the ffi library
	library(cerror): C interface error handling
	Portability and platform notes
	Windows

