-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrun.py
141 lines (117 loc) · 7.85 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import argparse
import numpy as np
import tensorflow as tf
from utils.algorithm_utils import discretise_region, filter_candidates, acquire_task, add_new_task
from utils.evaluation import Evaluation
from utils.init_utils import init_experiments, init_logger, str2bool, init_args
def run_experiments(**exp_params) -> None:
logger = init_logger(exp_params)
trajectory_generator, training_task_descriptors, test_task_confs, controls, dataset, \
session, model, meta_learner, lhs_tasks, test_observations = init_experiments(**exp_params)
meta_learner.train_model()
evaluation = None
if exp_params["evaluation"]:
evaluation = Evaluation(test_task_grid=test_task_confs,
meta_learner=meta_learner,
kwargs=exp_params,
test_observations=test_observations)
evaluation.evaluation_on_test_tasks(dataset=dataset, test_tasks_params=test_task_confs, iteration=0,
controls=controls)
for iteration in range(exp_params["task_budget"]):
latent_task_variables_mean, latent_task_variables_var = meta_learner.get_H_space_subset(end_task_id=
exp_params[
"n_initial_training_envs"] + iteration)
candidates = discretise_region(latent_task_variables_mean=latent_task_variables_mean,
slack_min_values=exp_params["slack_min_intervals"],
slack_max_values=exp_params["slack_max_intervals"],
grid_resolution=exp_params["candidate_grid_size"])
candidates = filter_candidates(latent_task_variables_mean=latent_task_variables_mean,
task_configurations=training_task_descriptors,
candidates=candidates,
config_space=exp_params[
"observed_configuration_space_interval"],
verbose=exp_params["verbose"], GPModel=model,
session=session)
logger.info(f"Number of candidates: {candidates.shape}")
selected_task_descriptor = acquire_task(iteration=iteration,
latent_task_variables_mean=latent_task_variables_mean,
latent_task_variables_var=latent_task_variables_var,
discretised_latent_space_region=candidates,
task_descriptors=training_task_descriptors,
meta_learner=meta_learner,
lhs_tasks=lhs_tasks, model=model,
**exp_params)
logger.info(f"Acquired task configuration: {selected_task_descriptor}")
dataset.add_configuration(new_configuration=selected_task_descriptor)
acquired_task_observations = trajectory_generator.observe_trajectories(
task_configurations=selected_task_descriptor,
controls=controls,
dim_states=exp_params["dim_states"])[0]
meta_learner, training_task_descriptors = add_new_task(iteration=iteration,
meta_learner=meta_learner,
acquired_task_observations=acquired_task_observations,
controls=controls,
training_task_descriptors=training_task_descriptors,
selected_task_descriptor=selected_task_descriptor,
**exp_params)
meta_learner.train_model()
if exp_params["evaluation"]:
evaluation.evaluation_on_test_tasks(dataset=dataset, test_tasks_params=test_task_confs,
iteration=(iteration + 1),
controls=controls)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--verbose", default=False, type=str2bool)
parser.add_argument("--seed", default=1, type=int)
# PAML parameters
parser.add_argument("--task_budget", default=15, type=int)
parser.add_argument("--n_initial_training_envs", default=3, type=int)
parser.add_argument("--initial_training_configurations", default="LHS", type=str)
parser.add_argument("--utility_function", default="PAML", type=str)
parser.add_argument("--candidate_grid_size", default=100, type=int)
# Environment / Dynamics parameters
parser.add_argument("--env_name", default="cartpole", type=str)
parser.add_argument("--policy", default="ALTERNATE", type=str)
parser.add_argument("--control_signal_upper_bound", default=25., type=float)
parser.add_argument("--alternations", default=10, type=int)
parser.add_argument("--dt", default=.125, type=float)
parser.add_argument("--training_trajectory_length", default=100, type=int)
# Latent space parameters
parser.add_argument("--dim_h", default=2, type=int)
parser.add_argument("--slack_min_const_dim_1", default=-10., type=float)
parser.add_argument("--slack_max_const_dim_1", default=10., type=float)
parser.add_argument("--slack_min_const_dim_2", default=-10., type=float)
parser.add_argument("--slack_max_const_dim_2", default=10., type=float)
# Configuration space interval parameters
parser.add_argument("--under_specified_system", default=False, type=str2bool)
parser.add_argument("--over_specified_system", default=False, type=str2bool)
parser.add_argument("--config_space_dim", default=2, type=int)
parser.add_argument("--observed_config_space_dim", default=2, type=int)
parser.add_argument("--config_interval_lower_bound_dim_1", default=.4, type=float)
parser.add_argument("--config_interval_upper_bound_dim_1", default=3., type=float)
parser.add_argument("--config_interval_lower_bound_dim_2", default=.4, type=float)
parser.add_argument("--config_interval_upper_bound_dim_2", default=3., type=float)
parser.add_argument("--config_interval_lower_bound_dim_3", default=.5, type=float)
parser.add_argument("--config_interval_upper_bound_dim_3", default=5., type=float)
parser.add_argument("--unobserved_parameter_lower_bound_dim_1", default=.4, type=float)
parser.add_argument("--unobserved_parameter_upper_bound_dim_1", default=3., type=float)
parser.add_argument("--config_space_decimals", default=2, type=int)
# Evaluation parameters
parser.add_argument("--evaluation", default=True, type=str2bool)
parser.add_argument("--n_tasks_per_dim_of_evaluation_task_grid", default=10, type=int)
parser.add_argument("--test_trajectory_length", default=100, type=int)
parser.add_argument("--oracle", default=False, type=str2bool)
# SVGP learning parameters
parser.add_argument("--n_inducing_points", default=300, type=int)
parser.add_argument("--data_normalization", default=True, type=str2bool)
parser.add_argument("--training_steps", default=5000, type=int)
parser.add_argument("--latent_variable_inference_steps", default=100, type=int)
parser.add_argument("--learning_rate", default=1e-2, type=float)
parser.add_argument("--batch_size", default=1000,
type=int)
ARGS = parser.parse_args()
args = vars(ARGS)
init_args(args)
tf.set_random_seed(args["seed"])
np.random.seed(args["seed"])
run_experiments(**args)