forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fuzzy_operations.py
195 lines (163 loc) · 5.87 KB
/
fuzzy_operations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
"""
By @Shreya123714
https://en.wikipedia.org/wiki/Fuzzy_set
"""
from __future__ import annotations
from dataclasses import dataclass
import matplotlib.pyplot as plt
import numpy as np
@dataclass
class FuzzySet:
"""
A class for representing and manipulating triangular fuzzy sets.
Attributes:
name: The name or label of the fuzzy set.
left_boundary: The left boundary of the fuzzy set.
peak: The peak (central) value of the fuzzy set.
right_boundary: The right boundary of the fuzzy set.
Methods:
membership(x): Calculate the membership value of an input 'x' in the fuzzy set.
union(other): Calculate the union of this fuzzy set with another fuzzy set.
intersection(other): Calculate the intersection of this fuzzy set with another.
complement(): Calculate the complement (negation) of this fuzzy set.
plot(): Plot the membership function of the fuzzy set.
>>> sheru = FuzzySet("Sheru", 0.4, 1, 0.6)
>>> sheru
FuzzySet(name='Sheru', left_boundary=0.4, peak=1, right_boundary=0.6)
>>> str(sheru)
'Sheru: [0.4, 1, 0.6]'
>>> siya = FuzzySet("Siya", 0.5, 1, 0.7)
>>> siya
FuzzySet(name='Siya', left_boundary=0.5, peak=1, right_boundary=0.7)
# Complement Operation
>>> sheru.complement()
FuzzySet(name='¬Sheru', left_boundary=0.4, peak=0.6, right_boundary=0)
>>> siya.complement() # doctest: +NORMALIZE_WHITESPACE
FuzzySet(name='¬Siya', left_boundary=0.30000000000000004, peak=0.5,
right_boundary=0)
# Intersection Operation
>>> siya.intersection(sheru)
FuzzySet(name='Siya ∩ Sheru', left_boundary=0.5, peak=0.6, right_boundary=1.0)
# Membership Operation
>>> sheru.membership(0.5)
0.16666666666666663
>>> sheru.membership(0.6)
0.0
# Union Operations
>>> siya.union(sheru)
FuzzySet(name='Siya U Sheru', left_boundary=0.4, peak=0.7, right_boundary=1.0)
"""
name: str
left_boundary: float
peak: float
right_boundary: float
def __str__(self) -> str:
"""
>>> FuzzySet("fuzzy_set", 0.1, 0.2, 0.3)
FuzzySet(name='fuzzy_set', left_boundary=0.1, peak=0.2, right_boundary=0.3)
"""
return (
f"{self.name}: [{self.left_boundary}, {self.peak}, {self.right_boundary}]"
)
def complement(self) -> FuzzySet:
"""
Calculate the complement (negation) of this fuzzy set.
Returns:
FuzzySet: A new fuzzy set representing the complement.
>>> FuzzySet("fuzzy_set", 0.1, 0.2, 0.3).complement()
FuzzySet(name='¬fuzzy_set', left_boundary=0.7, peak=0.9, right_boundary=0.8)
"""
return FuzzySet(
f"¬{self.name}",
1 - self.right_boundary,
1 - self.left_boundary,
1 - self.peak,
)
def intersection(self, other) -> FuzzySet:
"""
Calculate the intersection of this fuzzy set
with another fuzzy set.
Args:
other: Another fuzzy set to intersect with.
Returns:
A new fuzzy set representing the intersection.
>>> FuzzySet("a", 0.1, 0.2, 0.3).intersection(FuzzySet("b", 0.4, 0.5, 0.6))
FuzzySet(name='a ∩ b', left_boundary=0.4, peak=0.3, right_boundary=0.35)
"""
return FuzzySet(
f"{self.name} ∩ {other.name}",
max(self.left_boundary, other.left_boundary),
min(self.right_boundary, other.right_boundary),
(self.peak + other.peak) / 2,
)
def membership(self, x: float) -> float:
"""
Calculate the membership value of an input 'x' in the fuzzy set.
Returns:
The membership value of 'x' in the fuzzy set.
>>> a = FuzzySet("a", 0.1, 0.2, 0.3)
>>> a.membership(0.09)
0.0
>>> a.membership(0.1)
0.0
>>> a.membership(0.11)
0.09999999999999995
>>> a.membership(0.4)
0.0
>>> FuzzySet("A", 0, 0.5, 1).membership(0.1)
0.2
>>> FuzzySet("B", 0.2, 0.7, 1).membership(0.6)
0.8
"""
if x <= self.left_boundary or x >= self.right_boundary:
return 0.0
elif self.left_boundary < x <= self.peak:
return (x - self.left_boundary) / (self.peak - self.left_boundary)
elif self.peak < x < self.right_boundary:
return (self.right_boundary - x) / (self.right_boundary - self.peak)
msg = f"Invalid value {x} for fuzzy set {self}"
raise ValueError(msg)
def union(self, other) -> FuzzySet:
"""
Calculate the union of this fuzzy set with another fuzzy set.
Args:
other (FuzzySet): Another fuzzy set to union with.
Returns:
FuzzySet: A new fuzzy set representing the union.
>>> FuzzySet("a", 0.1, 0.2, 0.3).union(FuzzySet("b", 0.4, 0.5, 0.6))
FuzzySet(name='a U b', left_boundary=0.1, peak=0.6, right_boundary=0.35)
"""
return FuzzySet(
f"{self.name} U {other.name}",
min(self.left_boundary, other.left_boundary),
max(self.right_boundary, other.right_boundary),
(self.peak + other.peak) / 2,
)
def plot(self):
"""
Plot the membership function of the fuzzy set.
"""
x = np.linspace(0, 1, 1000)
y = [self.membership(xi) for xi in x]
plt.plot(x, y, label=self.name)
if __name__ == "__main__":
from doctest import testmod
testmod()
a = FuzzySet("A", 0, 0.5, 1)
b = FuzzySet("B", 0.2, 0.7, 1)
a.plot()
b.plot()
plt.xlabel("x")
plt.ylabel("Membership")
plt.legend()
plt.show()
union_ab = a.union(b)
intersection_ab = a.intersection(b)
complement_a = a.complement()
union_ab.plot()
intersection_ab.plot()
complement_a.plot()
plt.xlabel("x")
plt.ylabel("Membership")
plt.legend()
plt.show()